Suppr超能文献

基于比较图谱的体素形态计量学对轻度认知障碍的识别

A Comparative Atlas-Based Recognition of Mild Cognitive Impairment With Voxel-Based Morphometry.

作者信息

Long Zhuqing, Huang Jinchang, Li Bo, Li Zuojia, Li Zihao, Chen Hongwen, Jing Bin

机构信息

Medical Apparatus and Equipment Deployment, Nanfang Hospital, Southern Medical University, Guangzhou, China.

School of Biomedical Engineering, Capital Medical University, Beijing, China.

出版信息

Front Neurosci. 2018 Dec 6;12:916. doi: 10.3389/fnins.2018.00916. eCollection 2018.

Abstract

An accurate and reliable brain partition atlas is vital to quantitatively investigate the structural and functional abnormalities in mild cognitive impairment (MCI), generally considered to be a prodromal phase of Alzheimer's disease. In this paper, we proposed an automated structural classification method to identify MCI from healthy controls (HC) and investigated whether the classification performance was dependent on the brain parcellation schemes, including Automated Anatomical Labeling (AAL-90) atlas, Brainnetome (BN-246) atlas, and AAL-1024 atlas. In detail, structural magnetic resonance imaging (sMRI) data of 69 MCI patients and 63 HC matched well on gender, age, and education level were collected and analyzed with voxel-based morphometry method first, then the volume features of every region of interest (ROI) belonging to the above-mentioned three atlases were calculated and compared between MCI and HC groups, respectively. At last, the abnormal volume features were selected as the classification features for a proposed support vector machine based identification method. After the leave-one-out cross-validation to estimate the classification performance, our results reported accuracies of 83, 92, and 89% with AAL-90, BN-246, and AAL-1024 atlas, respectively, suggesting that future studies should pay more attention to the selection of brain partition schemes in the atlas-based studies. Furthermore, the consistent atrophic brain regions among three atlases were predominately located at bilateral hippocampus, bilateral parahippocampal, bilateral amygdala, bilateral cingulate gyrus, left angular gyrus, right superior frontal gyrus, right middle frontal gyrus, left inferior frontal gyrus, and left precentral gyrus.

摘要

准确可靠的脑部分区图谱对于定量研究轻度认知障碍(MCI)的结构和功能异常至关重要,MCI通常被认为是阿尔茨海默病的前驱阶段。在本文中,我们提出了一种自动结构分类方法,用于从健康对照(HC)中识别MCI,并研究分类性能是否依赖于脑部分割方案,包括自动解剖标记(AAL-90)图谱、脑网络组(BN-246)图谱和AAL-1024图谱。具体而言,首先收集了69例MCI患者和63例在性别、年龄和教育水平上匹配良好的HC的结构磁共振成像(sMRI)数据,并采用基于体素的形态学方法进行分析,然后分别计算并比较了属于上述三种图谱的每个感兴趣区域(ROI)的体积特征在MCI组和HC组之间的差异。最后,选择异常体积特征作为基于支持向量机的识别方法的分类特征。在通过留一法交叉验证来评估分类性能后,我们的结果显示,使用AAL-90、BN-246和AAL-1024图谱时的准确率分别为83%、92%和89%,这表明未来的研究在基于图谱的研究中应更加关注脑部分割方案的选择。此外,三种图谱中一致的萎缩脑区主要位于双侧海马体、双侧海马旁回、双侧杏仁核、双侧扣带回、左侧角回、右侧额上回、右侧额中回、左侧额下回和左侧中央前回。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f93/6291519/7b740f9133f1/fnins-12-00916-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验