文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症治疗和毒性研究的基于智能纳米载体的药物递送系统:综述

Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.

作者信息

Hossen Sarwar, Hossain M Khalid, Basher M K, Mia M N H, Rahman M T, Uddin M Jalal

机构信息

Department of Physics, Khulna Govt. Mahila College, National University, Gazipur 1704, Bangladesh.

Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh.

出版信息

J Adv Res. 2018 Jun 25;15:1-18. doi: 10.1016/j.jare.2018.06.005. eCollection 2019 Jan.


DOI:10.1016/j.jare.2018.06.005
PMID:30581608
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6300464/
Abstract

Nonspecific distribution and uncontrollable release of drugs in conventional drug delivery systems (CDDSs) have led to the development of smart nanocarrier-based drug delivery systems, which are also known as Smart Drug Delivery Systems (SDDSs). SDDSs can deliver drugs to the target sites with reduced dosage frequency and in a spatially controlled manner to mitigate the side effects experienced in CDDSs. Chemotherapy is widely used to treat cancer, which is the second leading cause of death worldwide. Site-specific drug delivery led to a keen interest in the SDDSs as an alternative to chemotherapy. Smart nanocarriers, nanoparticles used to carry drugs, are at the focus of SDDSs. A smart drug delivery system consists of smart nanocarriers, targeting mechanisms, and stimulus techniques. This review highlights the recent development of SDDSs for a number of smart nanocarriers, including liposomes, micelles, dendrimers, meso-porous silica nanoparticles, gold nanoparticles, super paramagnetic iron-oxide nanoparticles, carbon nanotubes, and quantum dots. The nanocarriers are described in terms of their structures, classification, synthesis and degree of smartness. Even though SDDSs feature a number of advantages over chemotherapy, there are major concerns about the toxicity of smart nanocarriers; therefore, a substantial study on the toxicity and biocompatibility of the nanocarriers has been reported. Finally, the challenges and future research scope in the field of SDDSs are also presented. It is expected that this review will be widely useful for those who have been seeking new research directions in this field and for those who are about to start their studies in smart nanocarrier-based drug delivery.

摘要

传统药物递送系统(CDDSs)中药物的非特异性分布和不可控释放促使了基于智能纳米载体的药物递送系统的发展,这类系统也被称为智能药物递送系统(SDDSs)。SDDSs能够以降低给药频率并在空间上可控的方式将药物递送至靶位点,从而减轻CDDSs中出现的副作用。化疗被广泛用于治疗癌症,癌症是全球第二大死因。靶向给药使得人们对作为化疗替代方案的SDDSs产生了浓厚兴趣。智能纳米载体,即用于携带药物的纳米颗粒,是SDDSs的核心。一个智能药物递送系统由智能纳米载体、靶向机制和刺激技术组成。本综述重点介绍了多种智能纳米载体的SDDSs的最新进展,这些智能纳米载体包括脂质体、胶束、树枝状大分子、介孔二氧化硅纳米颗粒、金纳米颗粒、超顺磁性氧化铁纳米颗粒、碳纳米管和量子点。文中从纳米载体的结构、分类、合成及智能程度方面对其进行了描述。尽管SDDSs相对于化疗具有诸多优势,但智能纳米载体的毒性仍是主要关注点;因此,已有大量关于纳米载体毒性和生物相容性的研究报道。最后,还介绍了SDDSs领域的挑战和未来研究方向。预计本综述将对那些一直在该领域寻求新研究方向的人以及即将开始基于智能纳米载体的药物递送研究的人具有广泛的参考价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/2028e1a63479/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/f4f4302d4f40/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/86e2ba7fbbdf/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/e5642cd2fbd5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/fec5116faafa/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/d1acd2356506/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/7f610ae569c9/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/3d29e8e7a4ad/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/d917494f047b/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/aa6c5f913caa/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/8e73407353cc/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/2028e1a63479/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/f4f4302d4f40/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/86e2ba7fbbdf/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/e5642cd2fbd5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/fec5116faafa/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/d1acd2356506/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/7f610ae569c9/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/3d29e8e7a4ad/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/d917494f047b/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/aa6c5f913caa/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/8e73407353cc/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/6300464/2028e1a63479/gr10.jpg

相似文献

[1]
Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.

J Adv Res. 2018-6-25

[2]
"Smart" drug delivery: A window to future of translational medicine.

Front Chem. 2023-1-4

[3]
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review.

Molecules. 2021-12-27

[4]
Recent Nanocarrier Approaches for Targeted Drug Delivery in Cancer Therapy.

Curr Mol Pharmacol. 2021

[5]
New Generation Smart Drug Delivery Systems for Rheumatoid Arthritis.

Curr Pharm Des. 2023

[6]
Potential of Nanocarrier-Based Drug Delivery Systems for Brain Targeting: A Current Review of Literature.

Int J Nanomedicine. 2021

[7]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[8]
Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade.

Curr Med Chem. 2021

[9]
Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review.

Nanomaterials (Basel). 2022-9-2

[10]
Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment.

ACS Pharmacol Transl Sci. 2021-6-1

引用本文的文献

[1]
Advanced strategies to overcome multidrug resistance in cancer therapy: progress in P-glycoprotein inhibitors, drug delivery, and personalized medicine.

Invest New Drugs. 2025-9-2

[2]
Novel bioengineering strategies for drug delivery systems.

Appl Mater Today. 2023-8

[3]
Targeted Drug Delivery for Breast Cancer using Functionalized Liposomes: Preparation Methods, Challenges, and Clinical Translation.

AAPS PharmSciTech. 2025-8-5

[4]
GSH/pH-Responsive Chitosan-PLA Hybrid Nanosystems for Targeted Ledipasvir Delivery to HepG2 Cells: Controlled Release, Improved Selectivity, DNA Interaction, Electrochemical and Stopped-Flow Kinetics Analyses.

Int J Mol Sci. 2025-6-24

[5]
Titano-magnetite nanoparticles for supercapacitors and magnetic hyperthermia performance.

Sci Rep. 2025-7-2

[6]
How Effective are Key Phytocompound Carrying Polysaccharide Nanocarriers as Anti-Breast Cancer Therapy? A Comprehensive Review of the Literature.

Int J Nanomedicine. 2025-6-27

[7]
Nanomaterial-assisted pancreatic cancer theranostics.

Regen Biomater. 2025-6-11

[8]
Long-Range Interactions Between Neighboring Nanoparticles Tuned by Confining Membranes.

Nanomaterials (Basel). 2025-6-12

[9]
Bioinformatics-Driven Engineering of ROS-Responsive Dextran--Poly(propylene sulfide) Nanoparticles Functionalized with Folic Acid for Targeted Prostate Cancer Therapy.

ACS Omega. 2025-6-4

[10]
Intracellular Uptake of Magnetic Nanocapsules with Ionic Chitosan Shells and Magnetically Triggered Cargo Release.

Nanotechnol Sci Appl. 2025-6-7

本文引用的文献

[1]
Controlled drug delivery vehicles for cancer treatment and their performance.

Signal Transduct Target Ther. 2018

[2]
Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers.

Int J Environ Res Public Health. 2018-2-14

[3]
Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles.

Biochem Biophys Rep. 2018-1-8

[4]
Liposomal co-delivery-based quantitative evaluation of chemosensitivity enhancement in breast cancer stem cells by knockdown of GRP78/CLU.

J Liposome Res. 2018-1-8

[5]
Hepatic toxicity assessment of cationic liposome exposure in healthy and chronic alcohol fed mice.

Heliyon. 2017-12-1

[6]
Progress in Nanomedicine: Approved and Investigational Nanodrugs.

P T. 2017-12

[7]
Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy.

Drug Deliv. 2017-11

[8]
Toxicity determinants of multi-walled carbon nanotubes: The relationship between functionalization and agglomeration.

Toxicol Rep. 2016-1-19

[9]
Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications.

Molecules. 2017-8-31

[10]
Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review.

Molecules. 2017-8-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索