文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

"Smart" drug delivery: A window to future of translational medicine.

作者信息

Rana Abhilash, Adhikary Meheli, Singh Praveen Kumar, Das Bhudev C, Bhatnagar Seema

机构信息

Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.

Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.

出版信息

Front Chem. 2023 Jan 4;10:1095598. doi: 10.3389/fchem.2022.1095598. eCollection 2022.


DOI:10.3389/fchem.2022.1095598
PMID:36688039
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9846181/
Abstract

Chemotherapy is the mainstay of cancer treatment today. Chemotherapeutic drugs are non-selective and can harm both cancer and healthy cells, causing a variety of adverse effects such as lack of specificity, cytotoxicity, short half-life, poor solubility, multidrug resistance, and acquiring cancer stem-like characteristics. There is a paradigm shift in drug delivery systems (DDS) with the advent of smarter ways of targeted cancer treatment. Smart Drug Delivery Systems (SDDSs) are stimuli responsive and can be modified in chemical structure in response to light, pH, redox, magnetic fields, and enzyme degradation can be future of translational medicine. Therefore, SDDSs have the potential to be used as a viable cancer treatment alternative to traditional chemotherapy. This review focuses mostly on stimuli responsive drug delivery, inorganic nanocarriers (Carbon nanotubes, gold nanoparticles, Meso-porous silica nanoparticles, quantum dots ), organic nanocarriers (Dendrimers, liposomes, micelles), antibody-drug conjugates (ADC) and small molecule drug conjugates (SMDC) based SDDSs for targeted cancer therapy and strategies of targeted drug delivery systems in cancer cells.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/fce048e8f58b/fchem-10-1095598-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/4816084d6610/fchem-10-1095598-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/c50b8ed5b646/fchem-10-1095598-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/52baa0400727/fchem-10-1095598-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/cf115ab5630e/fchem-10-1095598-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/92d30b7504fe/fchem-10-1095598-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/5ee201939ea8/fchem-10-1095598-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/c82b845acc89/fchem-10-1095598-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/5e5913f80324/fchem-10-1095598-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/fce048e8f58b/fchem-10-1095598-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/4816084d6610/fchem-10-1095598-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/c50b8ed5b646/fchem-10-1095598-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/52baa0400727/fchem-10-1095598-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/cf115ab5630e/fchem-10-1095598-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/92d30b7504fe/fchem-10-1095598-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/5ee201939ea8/fchem-10-1095598-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/c82b845acc89/fchem-10-1095598-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/5e5913f80324/fchem-10-1095598-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc7d/9846181/fce048e8f58b/fchem-10-1095598-g009.jpg

相似文献

[1]
"Smart" drug delivery: A window to future of translational medicine.

Front Chem. 2023-1-4

[2]
Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.

J Adv Res. 2018-6-25

[3]
Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy.

Curr Pharm Des. 2019

[4]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[5]
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review.

Molecules. 2021-12-27

[6]
Recent Nanocarrier Approaches for Targeted Drug Delivery in Cancer Therapy.

Curr Mol Pharmacol. 2021

[7]
Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview.

Drug Deliv Transl Res. 2022-6

[8]
Concepts on Smart Nano-Based Drug Delivery System.

Recent Pat Nanotechnol. 2022

[9]
Recent Progress in Stimuli-Responsive Intelligent Nano Scale Drug Delivery Systems: A Special Focus Towards pH-Sensitive Systems.

Curr Drug Targets. 2021

[10]
Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment.

AAPS PharmSciTech. 2021-12-14

引用本文的文献

[1]
Nanomaterial-enabled drug delivery systems for circadian medicine: bridging direct rhythm modulation and chronotherapy.

RSC Adv. 2025-9-5

[2]
Nanocarriers for cutting-edge cancer immunotherapies.

J Transl Med. 2025-4-16

[3]
Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release.

Pharmaceutics. 2025-1-19

[4]
Drug Repurposing: A Conduit to Unravelling Metabolic Reprogramming for Cancer Treatment.

Mini Rev Med Chem. 2025

[5]
A Modular Approach to Obtain HER2-Targeting DM1-Loaded Nanoparticles for Gastric Cancer Therapy.

ACS Omega. 2024-11-22

[6]
A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years.

Pharmaceutics. 2024-5-16

[7]
Colloidal and Biological Characterization of Dual Drug-Loaded Smart Micellar Systems.

Polymers (Basel). 2024-4-24

[8]
Stimulus triggered release of actives from composite microcapsules based on sporopollenin from .

RSC Adv. 2024-3-28

[9]
Evaluating a targeted Palbociclib-Trastuzumab loaded smart niosome platform for treating HER2 positive breast cancer cells.

Int J Pharm X. 2024-3-11

[10]
Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy.

Biomedicines. 2024-1-15

本文引用的文献

[1]
Targeting the Phosphatidylserine-Immune Checkpoint with a Small-Molecule Maytansinoid Conjugate.

J Med Chem. 2022-10-13

[2]
Role of gold nanoparticles in advanced biomedical applications.

Nanoscale Adv. 2020-7-16

[3]
Enhanced ultrasound imaging and anti-tumor properties of Span-polyethylene glycol with folic acid-carbon nanotube-paclitaxel multifunctional microbubbles.

RSC Adv. 2019-10-31

[4]
Antibody drug conjugate: the "biological missile" for targeted cancer therapy.

Signal Transduct Target Ther. 2022-3-22

[5]
Utilizing RNA nanotechnology to construct negatively charged and ultrasound-responsive nanodroplets for targeted delivery of siRNA.

Drug Deliv. 2022-12

[6]
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review.

Molecules. 2021-12-27

[7]
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids.

Membranes (Basel). 2021-11-24

[8]
Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies.

Materials (Basel). 2021-11-7

[9]
Integrative oncology: Addressing the global challenges of cancer prevention and treatment.

CA Cancer J Clin. 2022-3

[10]
An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy.

Molecules. 2021-9-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索