MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
Department of Statistics, University of Oxford, Oxford, UK.
Nat Methods. 2024 May;21(5):766-776. doi: 10.1038/s41592-024-02240-7. Epub 2024 Apr 23.
T cells are essential immune cells responsible for identifying and eliminating pathogens. Through interactions between their T-cell antigen receptors (TCRs) and antigens presented by major histocompatibility complex molecules (MHCs) or MHC-like molecules, T cells discriminate foreign and self peptides. Determining the fundamental principles that govern these interactions has important implications in numerous medical contexts. However, reconstructing a map between T cells and their antagonist antigens remains an open challenge for the field of immunology, and success of in silico reconstructions of this relationship has remained incremental. In this Perspective, we discuss the role that new state-of-the-art deep-learning models for predicting protein structure may play in resolving some of the unanswered questions the field faces linking TCR and peptide-MHC properties to T-cell specificity. We provide a comprehensive overview of structural databases and the evolution of predictive models, and highlight the breakthrough AlphaFold provided the field.
T 细胞是负责识别和消除病原体的重要免疫细胞。通过它们的 T 细胞抗原受体(TCR)与主要组织相容性复合体分子(MHCs)或 MHC 样分子呈递的抗原之间的相互作用,T 细胞区分外来和自身肽。确定这些相互作用的基本原理在许多医学背景下具有重要意义。然而,重建 T 细胞与其拮抗剂抗原之间的图谱仍然是免疫学领域的一个开放性挑战,并且这种关系的计算机重建的成功仍然是渐进的。在本观点中,我们讨论了预测蛋白质结构的最新深度学习模型在解决该领域面临的一些未解决问题方面可能发挥的作用,这些问题将 TCR 和肽-MHC 特性与 T 细胞特异性联系起来。我们全面概述了结构数据库和预测模型的发展,并强调了 AlphaFold 为该领域带来的突破。