Suppr超能文献

MultiRTA:一种简单而可靠的方法,用于预测多种 II 类 MHC 同种异型的肽结合亲和力。

MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes.

机构信息

Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA.

出版信息

BMC Bioinformatics. 2010 Sep 24;11:482. doi: 10.1186/1471-2105-11-482.

Abstract

BACKGROUND

The binding of peptide fragments of antigens to class II MHC is a crucial step in initiating a helper T cell immune response. The identification of such peptide epitopes has potential applications in vaccine design and in better understanding autoimmune diseases and allergies. However, comprehensive experimental determination of peptide-MHC binding affinities is infeasible due to MHC diversity and the large number of possible peptide sequences. Computational methods trained on the limited experimental binding data can address this challenge. We present the MultiRTA method, an extension of our previous single-type RTA prediction method, which allows the prediction of peptide binding affinities for multiple MHC allotypes not used to train the model. Thus predictions can be made for many MHC allotypes for which experimental binding data is unavailable.

RESULTS

We fit MultiRTA models for both HLA-DR and HLA-DP using large experimental binding data sets. The performance in predicting binding affinities for novel MHC allotypes, not in the training set, was tested in two different ways. First, we performed leave-one-allele-out cross-validation, in which predictions are made for one allotype using a model fit to binding data for the remaining MHC allotypes. Comparison of the HLA-DR results with those of two other prediction methods applied to the same data sets showed that MultiRTA achieved performance comparable to NetMHCIIpan and better than the earlier TEPITOPE method. We also directly tested model transferability by making leave-one-allele-out predictions for additional experimentally characterized sets of overlapping peptide epitopes binding to multiple MHC allotypes. In addition, we determined the applicability of prediction methods like MultiRTA to other MHC allotypes by examining the degree of MHC variation accounted for in the training set. An examination of predictions for the promiscuous binding CLIP peptide revealed variations in binding affinity among alleles as well as potentially distinct binding registers for HLA-DR and HLA-DP. Finally, we analyzed the optimal MultiRTA parameters to discover the most important peptide residues for promiscuous and allele-specific binding to HLA-DR and HLA-DP allotypes.

CONCLUSIONS

The MultiRTA method yields competitive performance but with a significantly simpler and physically interpretable model compared with previous prediction methods. A MultiRTA prediction webserver is available at http://bordnerlab.org/MultiRTA.

摘要

背景

抗原肽片段与 II 类 MHC 的结合是启动辅助 T 细胞免疫反应的关键步骤。鉴定此类肽表位在疫苗设计和更好地理解自身免疫性疾病和过敏反应方面具有潜在应用。然而,由于 MHC 的多样性和可能的肽序列数量众多,全面实验确定肽-MHC 结合亲和力是不可行的。基于有限的实验结合数据进行训练的计算方法可以解决这一挑战。我们提出了 MultiRTA 方法,这是我们之前的单类型 RTA 预测方法的扩展,该方法允许预测未用于训练模型的多种 MHC 同种型的肽结合亲和力。因此,可以针对许多缺乏实验结合数据的 MHC 同种型进行预测。

结果

我们使用大型实验结合数据集为 HLA-DR 和 HLA-DP 拟合了 MultiRTA 模型。通过两种不同的方法测试了在新型 MHC 同种型中预测结合亲和力的性能,这些同种型不在训练集中。首先,我们进行了单等位基因留一交叉验证,其中使用针对其余 MHC 同种型的结合数据拟合的模型对一种等位基因进行预测。将 HLA-DR 结果与应用于相同数据集的另外两种预测方法的结果进行比较表明,MultiRTA 的性能可与 NetMHCIIpan 相媲美,优于早期的 TEPITOPE 方法。我们还通过对多个 MHC 同种型结合的重叠肽表位的额外实验特征集进行留一等位基因预测,直接测试了模型的可转移性。此外,我们通过检查训练集中 MHC 变异的程度,确定了像 MultiRTA 这样的预测方法对其他 MHC 同种型的适用性。对混杂结合 CLIP 肽的预测分析表明,等位基因之间存在结合亲和力的变化,以及 HLA-DR 和 HLA-DP 之间可能存在不同的结合寄存器。最后,我们分析了最优的 MultiRTA 参数,以发现对 HLA-DR 和 HLA-DP 同种型的混杂和等位基因特异性结合最重要的肽残基。

结论

与以前的预测方法相比,MultiRTA 方法的性能具有竞争力,但模型更简单,物理解释更清晰。MultiRTA 预测网络服务器可在 http://bordnerlab.org/MultiRTA 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3cd/2957400/17525210a637/1471-2105-11-482-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验