Lopes Fabio, Leal Adriana, Medeiros Julio, Pinto Mauro F, Dourado Antonio, Dumpelmann Matthias, Teixeira Cesar
IEEE Trans Neural Syst Rehabil Eng. 2022;30:559-568. doi: 10.1109/TNSRE.2022.3154891. Epub 2022 Mar 21.
Independent component analysis (ICA) is commonly used to remove noisy artifacts from multi-channel scalp electroencephalogram (EEG) signals. ICA decomposes EEG into different independent components (ICs) and then, experts remove the noisy ones. This process is highly time-consuming and experts are not always available. To surpass this drawback, research is going on to develop models to automatically conduct IC classification. Current state-of-the-art models use power spectrum densities (PSDs) and topoplots to classify ICs. The performance of these methods may be limited by disregarding the IC time-series that would contribute to fully simulate the visual inspection performed by experts.
We present a novel ensemble deep neural network that combines time-series, PSDs, and topoplots to classify ICs. Moreover, we study the ability to use our model in transfer learning approaches.
Experimental results showed that using time-series improves IC classification. Results also indicated that transfer learning obtained higher performance than simply training a new model from scratch.
Researchers should develop IC classifiers using the three sources of information. Moreover, transfer learning approaches should be considered when producing new deep learning models.
This work improves IC classification, enhancing the automatic removal of EEG artifacts. Additionally, since labelled ICs are generally not publicly available, the possibility of using our model in transfer learning studies may motivate other researchers to develop their own classifiers.
独立成分分析(ICA)通常用于从多通道头皮脑电图(EEG)信号中去除噪声伪迹。ICA将EEG分解为不同的独立成分(IC),然后由专家去除有噪声的成分。这个过程非常耗时,而且专家并非总是可得。为了克服这一缺点,正在进行相关研究以开发能够自动进行IC分类的模型。当前最先进的模型使用功率谱密度(PSD)和头皮分布图来对IC进行分类。这些方法的性能可能会受到忽视IC时间序列的限制,而IC时间序列有助于充分模拟专家进行的目视检查。
我们提出了一种新颖的集成深度神经网络,它结合了时间序列、PSD和头皮分布图来对IC进行分类。此外,我们研究了在迁移学习方法中使用我们模型的能力。
实验结果表明,使用时间序列可提高IC分类的准确性。结果还表明,迁移学习比简单地从头训练一个新模型能获得更高的性能。
研究人员应利用这三种信息来源开发IC分类器。此外,在生成新的深度学习模型时应考虑迁移学习方法。
这项工作改进了IC分类,增强了EEG伪迹的自动去除。此外,由于标记的IC通常不公开,在迁移学习研究中使用我们模型的可能性可能会促使其他研究人员开发自己的分类器。