Department of Bioengineering, University of California-Berkeley, Berkeley, CA, United States.
Department of Bioengineering, University of California-Berkeley, Berkeley, CA, United States; Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, CA, United States.
Biomaterials. 2019 Feb;194:73-83. doi: 10.1016/j.biomaterials.2018.11.032. Epub 2018 Nov 28.
Human induced pluripotent stem cell (hiPSC) derived angiogenesis models present a unique opportunity for patient-specific platforms to study the complex process of angiogenesis and the endothelial cell response to biomaterial and biophysical changes in a defined microenvironment. We present a refined method for differentiating hiPSCs into a CD31 endothelial cell population (hiPSC-ECs) using a single basal medium from pluripotency to the final stage of differentiation. This protocol produces endothelial cells that are functionally competent in assays following purification. Subsequently, an in vitro angiogenesis model was developed by encapsulating the hiPSC-ECs into a tunable, growth factor sequestering hyaluronic acid (HyA) matrix where they formed stable, capillary-like networks that responded to environmental stimuli. Perfusion of the networks was demonstrated using fluorescent beads in a microfluidic device designed to study angiogenesis. The combination of hiPSC-ECs, bioinspired hydrogel, and the microfluidic platform creates a unique testbed for rapidly assessing the performance of angiogenic biomaterials.
人诱导多能干细胞(hiPSC)衍生的血管生成模型为研究血管生成的复杂过程以及内皮细胞对生物材料和生物物理变化在特定微环境中的反应提供了独特的机会。我们提出了一种改良的方法,使用单一的基础培养基将 hiPSC 分化为 CD31 内皮细胞群体(hiPSC-ECs),从多能性到分化的最后阶段。该方案在经过纯化后,可在功能测定中产生功能齐全的内皮细胞。随后,通过将 hiPSC-EC 包封在可调节的、生长因子隔离的透明质酸(HyA)基质中,开发了一种体外血管生成模型,其中它们形成了对环境刺激有反应的稳定的毛细血管样网络。在设计用于研究血管生成的微流控装置中,使用荧光珠演示了网络的灌注。hiPSC-EC、仿生水凝胶和微流控平台的结合为快速评估血管生成生物材料的性能创造了独特的试验台。