Stark Britanny L, Gamboa Michelle, Esparza Aibhlin, Cavendar-Word Truman J, Bermudez Diego, Carlon Luisa, Roberson David A, Joddar Binata, Natividad-Diaz Sylvia
Department of Metallurgical, Materials, and Biomedical Engineering (MMBME), The University of Texas at El Paso (UTEP), 500 West University Avenue, El Paso, Texas 79968, United States.
3D Printed Microphysiological Systems Laboratory, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.
ACS Appl Bio Mater. 2024 Dec 16;7(12):7883-7894. doi: 10.1021/acsabm.4c00059. Epub 2024 May 22.
Stereolithography (SLA) 3D printing is a rapid prototyping technique and reproducible manufacturing platform, which makes it a useful tool to develop advanced microfluidic devices for bioanalytical applications. However, limited information exists regarding the physical, chemical, and biological properties of the photocured polymers printed with SLA. This study demonstrates the characterization of a commercially available SLA 3D printed polymer to evaluate the potential presence of any time-dependent changes in material properties that may affect its ability to produce functional, capillary-action microfluidic devices. The printed polymer was analyzed with Fourier transform infrared-attenuated total reflectance, contact angle measurements, tensile test, impact test, scanning electron microscopy, and fluid flow analysis. Polymer biocompatibility was assessed with propidium iodide flow cytometry and an MTT assay for cell viability. The material characterization and biocompatibility results were then implemented to design and fabricate a self-driven capillary action microfluidic device for future use as a bioanalytical assay. This study demonstrates temporally stable mechanical properties and biocompatibility of the SLA polymer. However, surface characterization through contact angle measurements shows the polymer's wettability changes over time which indicates there is a limited postprinting period when the polymer can be used for capillary-based fluid flow. Overall, this study demonstrates the feasibility of implementing SLA as a high-throughput manufacturing method for capillary action microfluidic devices.
立体光刻(SLA)3D打印是一种快速成型技术和可重复制造平台,这使其成为开发用于生物分析应用的先进微流控装置的有用工具。然而,关于用SLA打印的光固化聚合物的物理、化学和生物学特性的信息有限。本研究展示了一种市售SLA 3D打印聚合物的特性,以评估材料特性中可能影响其生产功能性毛细管作用微流控装置能力的任何随时间变化的潜在情况。通过傅里叶变换红外衰减全反射、接触角测量、拉伸试验、冲击试验、扫描电子显微镜和流体流动分析对打印的聚合物进行了分析。用碘化丙啶流式细胞术和MTT细胞活力测定法评估了聚合物的生物相容性。然后利用材料特性和生物相容性结果设计并制造了一种自驱动毛细管作用微流控装置,以备将来用作生物分析测定。本研究证明了SLA聚合物在时间上具有稳定的机械性能和生物相容性。然而,通过接触角测量进行的表面表征表明,聚合物的润湿性会随时间变化,这表明聚合物可用于基于毛细管的流体流动的后打印期有限。总体而言,本研究证明了将SLA作为毛细管作用微流控装置的高通量制造方法的可行性。