Suppr超能文献

比较诱变和模拟作为鉴定蛋白质热适应中功能重要序列变化的工具。

Comparing mutagenesis and simulations as tools for identifying functionally important sequence changes for protein thermal adaptation.

机构信息

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361102 Xiamen, China.

Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950.

出版信息

Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):679-688. doi: 10.1073/pnas.1817455116. Epub 2018 Dec 24.

Abstract

Comparative studies of orthologous proteins of species evolved at different temperatures have revealed consistent patterns of temperature-related variation in thermal stabilities of structure and function. However, the precise mechanisms by which interspecific variations in sequence foster these adaptive changes remain largely unknown. Here, we compare orthologs of cytosolic malate dehydrogenase (cMDH) from marine molluscs adapted to temperatures ranging from -1.9 °C (Antarctica) to ∼55 °C (South China coast) and show how amino acid usage in different regions of the enzyme (surface, intermediate depth, and protein core) varies with adaptation temperature. This eukaryotic enzyme follows some but not all of the rules established in comparisons of archaeal and bacterial proteins. To link the effects of specific amino acid substitutions with adaptive variations in enzyme thermal stability, we combined site-directed mutagenesis (SDM) and in vitro protein experimentation with in silico mutagenesis using molecular dynamics simulation (MDS) techniques. SDM and MDS methods generally but not invariably yielded common effects on protein stability. MDS analysis is shown to provide insights into how specific amino acid substitutions affect the conformational flexibilities of mobile regions (MRs) of the enzyme that are essential for binding and catalysis. Whereas these substitutions invariably lie outside of the MRs, they effectively transmit their flexibility-modulating effects to the MRs through linked interactions among surface residues. This discovery illustrates that regions of the protein surface lying outside of the site of catalysis can help establish an enzyme's thermal responses and foster evolutionary adaptation of function.

摘要

比较不同温度下进化的物种的同源蛋白的研究揭示了结构和功能热稳定性与温度相关的变化的一致模式。然而,种间序列变化促进这些适应性变化的确切机制在很大程度上仍然未知。在这里,我们比较了适应从-1.9°C(南极洲)到约 55°C(中国南海海岸)温度的海洋软体动物细胞质苹果酸脱氢酶(cMDH)的同源物,并展示了酶的不同区域(表面、中间深度和蛋白质核心)的氨基酸使用如何随适应温度而变化。这种真核酶遵循了在古细菌和细菌蛋白比较中建立的一些规则,但不是全部。为了将特定氨基酸取代的影响与酶热稳定性的适应性变化联系起来,我们将定点诱变(SDM)和体外蛋白质实验与使用分子动力学模拟(MDS)技术的计算机诱变相结合。SDM 和 MDS 方法通常但并非总是产生对蛋白质稳定性的共同影响。MDS 分析表明,特定氨基酸取代如何影响对结合和催化至关重要的酶的可移动区域(MR)的构象灵活性。虽然这些取代无一例外地位于 MR 之外,但它们通过表面残基之间的连锁相互作用,有效地将其调节灵活性的影响传递给 MR。这一发现表明,位于催化位点之外的蛋白质表面区域可以帮助建立酶的热响应,并促进功能的进化适应。

相似文献

1
Comparing mutagenesis and simulations as tools for identifying functionally important sequence changes for protein thermal adaptation.
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):679-688. doi: 10.1073/pnas.1817455116. Epub 2018 Dec 24.
2
Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1274-1279. doi: 10.1073/pnas.1718910115. Epub 2018 Jan 22.

引用本文的文献

3
Thermal Adaptation of Cytosolic Malate Dehydrogenase Revealed by Deep Learning and Coevolutionary Analysis.
J Chem Theory Comput. 2025 Mar 25;21(6):3277-3287. doi: 10.1021/acs.jctc.4c01774. Epub 2025 Mar 13.
5
The structural insights of L-asparaginase from CSPS4 at elevated temperatures highlight its thermophilic nature.
3 Biotech. 2024 Oct;14(10):230. doi: 10.1007/s13205-024-04072-w. Epub 2024 Sep 11.
6
Tissue-specific temperature dependence of RNA editing levels in zebrafish.
BMC Biol. 2023 Nov 20;21(1):262. doi: 10.1186/s12915-023-01738-4.
7
Predicting thermostability difference between cellular protein orthologs.
Bioinformatics. 2023 Aug 1;39(8). doi: 10.1093/bioinformatics/btad504.
8
Proanthocyanidin B2 derived metabolites may be ligands for bile acid receptors S1PR2, PXR and CAR: an approach.
J Biomol Struct Dyn. 2024 May;42(8):4249-4262. doi: 10.1080/07391102.2023.2224886. Epub 2023 Jun 20.
9
Temperature-dependent RNA editing in octopus extensively recodes the neural proteome.
Cell. 2023 Jun 8;186(12):2544-2555.e13. doi: 10.1016/j.cell.2023.05.004.
10
Data-driven strategies for the computational design of enzyme thermal stability: trends, perspectives, and prospects.
Acta Biochim Biophys Sin (Shanghai). 2023 Mar 25;55(3):343-355. doi: 10.3724/abbs.2023033.

本文引用的文献

1
Biophysical experiments and biomolecular simulations: A perfect match?
Science. 2018 Jul 27;361(6400):355-360. doi: 10.1126/science.aat4010.
2
Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1274-1279. doi: 10.1073/pnas.1718910115. Epub 2018 Jan 22.
4
Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability.
Crit Rev Biotechnol. 2017 May;37(3):309-322. doi: 10.3109/07388551.2016.1144045. Epub 2016 Mar 3.
7
Rigidity versus flexibility: the dilemma of understanding protein thermal stability.
FEBS J. 2015 Oct;282(20):3899-917. doi: 10.1111/febs.13343. Epub 2015 Jul 15.
8
Protein surface softness is the origin of enzyme cold-adaptation of trypsin.
PLoS Comput Biol. 2014 Aug 28;10(8):e1003813. doi: 10.1371/journal.pcbi.1003813. eCollection 2014 Aug.
9
Maximum allowed solvent accessibilites of residues in proteins.
PLoS One. 2013 Nov 21;8(11):e80635. doi: 10.1371/journal.pone.0080635. eCollection 2013.
10
Adaptive evolution of fish hatching enzyme: one amino acid substitution results in differential salt dependency of the enzyme.
J Exp Biol. 2013 May 1;216(Pt 9):1609-15. doi: 10.1242/jeb.069716. Epub 2013 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验