Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom.
Iridia Incorporated , 3156 Lionshead Avenue , Suite 1, Carlsbad , California 92010 , United States.
Nano Lett. 2019 Feb 13;19(2):1210-1215. doi: 10.1021/acs.nanolett.8b04715. Epub 2019 Jan 7.
Solid-state nanopores are powerful tools for reading the three-dimensional shape of molecules, allowing for the translation of molecular structure information into electric signals. Here, we show a high-resolution integrated nanopore system for identifying DNA nanostructures that has the capability of distinguishing attached short DNA hairpins with only a stem length difference of 8 bp along a DNA double strand named the DNA carrier. Using our platform, we can read up to 112 DNA hairpins with a separating distance of 114 bp attached on a DNA carrier that carries digital information. Our encoding strategy allows for the creation of a library of molecules with a size of up to 5 × 10 (2) that is only built from a few hundred types of base molecules for data storage and has the potential to be extended by linking multiple DNA carriers. Our platform provides a nanopore- and DNA nanostructure-based data storage method with convenient access and the potential for miniature-scale integration.
固态纳米孔是读取分子三维形状的强大工具,可将分子结构信息转换为电信号。在这里,我们展示了一种用于识别 DNA 纳米结构的高分辨率集成纳米孔系统,该系统能够区分附着在 DNA 双链上的短 DNA 发夹,其茎长度差异仅为 8bp,我们称之为 DNA 载体。使用我们的平台,我们可以读取多达 112 个 DNA 发夹,这些发夹的分离距离为 114bp,附着在携带数字信息的 DNA 载体上。我们的编码策略允许创建一个大小高达 5×10(2)的分子库,该库仅由几百种碱基分子构建而成,用于数据存储,并且通过连接多个 DNA 载体,其具有扩展的潜力。我们的平台提供了一种基于纳米孔和 DNA 纳米结构的数据存储方法,具有方便访问和微型化集成的潜力。