Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA.
Nat Nanotechnol. 2024 Nov;19(11):1654-1664. doi: 10.1038/s41565-024-01771-6. Epub 2024 Aug 22.
Any modern information system is expected to feature a set of primordial features and functions: a substrate stably carrying data; the ability to repeatedly write, read, erase, reload and compute on specific data from that substrate; and the overall ability to execute such functions in a seamless and programmable manner. For nascent molecular information technologies, proof-of-principle realization of this set of primordial capabilities would advance the vision for their continued development. Here we present a DNA-based store and compute engine that captures these primordial capabilities. This system comprises multiple image files encoded into DNA and adsorbed onto ~50-μm-diameter, highly porous, hierarchically branched, colloidal substrate particles comprised of naturally abundant cellulose acetate. Their surface areas are over 200 cm mg with binding capacities of over 10 DNA oligos mg, 10 TB mg or 10 TB cm. This 'dendricolloid' stably holds DNA files better than bare DNA with an extrapolated ability to be repeatedly lyophilized and rehydrated over 170 times compared with 60 times, respectively. Accelerated ageing studies project half-lives of ~6,000 and 2 million years at 4 °C and -18 °C, respectively. The data can also be erased and replaced, and non-destructive file access is achieved through transcribing from distinct synthetic promoters. The resultant RNA molecules can be directly read via nanopore sequencing and can also be enzymatically computed to solve simplified 3 × 3 chess and sudoku problems. Our study establishes a feasible route for utilizing the high information density and parallel computational advantages of nucleic acids.
一个稳定承载数据的基质;能够反复在该基质上对特定数据进行写入、读取、擦除、重新加载和计算的能力;以及以无缝和可编程的方式执行此类功能的整体能力。对于新兴的分子信息技术,实现这组基本能力的原理验证将推进其持续发展的愿景。在这里,我们提出了一种基于 DNA 的存储和计算引擎,该引擎捕获了这些基本能力。该系统由多个图像文件编码到 DNA 中,并吸附到直径约 50-μm、高度多孔、层次分支、由天然丰富的醋酸纤维素组成的胶体基质颗粒上。它们的表面积超过 200 cm mg,结合能力超过 10 DNA 寡聚物 mg、10 TB mg 或 10 TB cm。这种“树枝状胶体”比裸露的 DNA 更稳定地保持 DNA 文件,分别比 60 次多 170 次重复冻干和复水的外推能力。加速老化研究预测,在 4°C 和-18°C 下的半衰期分别约为 6000 年和 200 万年。数据也可以被擦除和替换,并且可以通过从不同的合成启动子转录来实现非破坏性文件访问。所得的 RNA 分子可以通过纳米孔测序直接读取,也可以通过酶促计算来解决简化的 3×3 国际象棋和数独问题。我们的研究为利用核酸的高信息密度和并行计算优势建立了一条可行的途径。