Wang Junling, Han Xuemei, Saha Sougata, Xu Tao, Rai Reena, Zhang Fangliang, Wolf Yuri I, Wolfson Alexey, Yates John R, Kashina Anna
Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Chem Biol. 2011 Jan 28;18(1):121-30. doi: 10.1016/j.chembiol.2010.10.016.
Posttranslational arginylation mediated by arginyl transferase (ATE1) plays an important role in cardiovascular development, cell motility, and regulation of cytoskeleton and metabolic enzymes. This protein modification was discovered decades ago, however, the arginylation reaction and the functioning of ATE1 remained poorly understood because of the lack of good biochemical models. Here, we report the development of an in vitro arginylation system, in which ATE1 function and molecular requirements can be tested using purified recombinant ATE1 isoforms supplemented with a controlled number of components. Our results show that arginylation reaction is a self-sufficient, ATP-independent process that can affect different sites in a polypeptide and that arginyl transferases form different molecular complexes in vivo, associate with components of the translation machinery, and have distinct, partially overlapping subsets of substrates, suggesting that these enzymes play different physiological functions.
由精氨酰转移酶(ATE1)介导的翻译后精氨酰化在心血管发育、细胞运动以及细胞骨架和代谢酶的调节中发挥着重要作用。这种蛋白质修饰在数十年前就已被发现,然而,由于缺乏良好的生化模型,精氨酰化反应和ATE1的功能仍未得到充分理解。在此,我们报告了一种体外精氨酰化系统的开发,在该系统中,可以使用补充了可控数量成分的纯化重组ATE1同工型来测试ATE1的功能和分子需求。我们的结果表明,精氨酰化反应是一个自给自足、不依赖ATP的过程,它可以影响多肽中的不同位点,并且精氨酰转移酶在体内形成不同的分子复合物,与翻译机制的成分相关联,并且具有不同的、部分重叠的底物子集,这表明这些酶发挥着不同的生理功能。