Suppr超能文献

相似文献

1
Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer.
Clin Cancer Res. 2019 May 1;25(9):2755-2768. doi: 10.1158/1078-0432.CCR-18-3230. Epub 2018 Dec 26.
4
New Hope in Prostate Cancer Precision Medicine? miRNA Replacement and Epigenetics.
Clin Cancer Res. 2019 May 1;25(9):2679-2681. doi: 10.1158/1078-0432.CCR-19-0061. Epub 2019 Feb 26.
6
Promoter Methylation-mediated Silencing of the MiR-192-5p Promotes Endometrial Cancer Progression by Targeting ALX1.
Int J Med Sci. 2021 Apr 26;18(12):2510-2520. doi: 10.7150/ijms.58954. eCollection 2021.
7
miR-26a-5p restoration EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer.
Expert Opin Ther Targets. 2023 Jul-Dec;27(12):1285-1297. doi: 10.1080/14728222.2023.2293750. Epub 2023 Dec 30.
10
miR-483-5p promotes prostate cancer cell proliferation and invasion by targeting RBM5.
Int Braz J Urol. 2017 Nov-Dec;43(6):1060-1067. doi: 10.1590/S1677-5538.IBJU.2016.0595.

引用本文的文献

1
circTP63 promotes prostate cancer progression via miR-421/VAMP associated protein A axis.
J Cancer. 2024 Aug 19;15(16):5451-5461. doi: 10.7150/jca.99561. eCollection 2024.
2
MiR-338-5p, a novel metastasis-related miRNA, inhibits triple-negative breast cancer progression by targeting the ETS1/NOTCH1 axis.
Heliyon. 2024 Jul 20;10(15):e34949. doi: 10.1016/j.heliyon.2024.e34949. eCollection 2024 Aug 15.
3
Meeting proceedings of the 43rd Indian Association for Cancer Research (IACR).
Biol Open. 2024 Aug 15;13(8). doi: 10.1242/bio.061613. Epub 2024 Aug 14.
4
Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives.
Signal Transduct Target Ther. 2024 Aug 2;9(1):192. doi: 10.1038/s41392-024-01885-2.
6
Targeting MALAT1 Augments Sensitivity to PARP Inhibition by Impairing Homologous Recombination in Prostate Cancer.
Cancer Res Commun. 2023 Oct 9;3(10):2044-2061. doi: 10.1158/2767-9764.CRC-23-0089.
7
The Bone Microenvironment Soil in Prostate Cancer Metastasis: An miRNA Approach.
Cancers (Basel). 2023 Aug 9;15(16):4027. doi: 10.3390/cancers15164027.
8
NPAS2 promotes aerobic glycolysis and tumor growth in prostate cancer through HIF-1A signaling.
BMC Cancer. 2023 Mar 28;23(1):280. doi: 10.1186/s12885-023-10685-w.
10
Cancer Stem Cells-The Insight into Non-Coding RNAs.
Cells. 2022 Nov 21;11(22):3699. doi: 10.3390/cells11223699.

本文引用的文献

1
The long tail of oncogenic drivers in prostate cancer.
Nat Genet. 2018 May;50(5):645-651. doi: 10.1038/s41588-018-0078-z. Epub 2018 Apr 2.
2
Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance.
Cancer Cell. 2017 Dec 11;32(6):792-806.e7. doi: 10.1016/j.ccell.2017.10.008. Epub 2017 Nov 16.
3
Molecular Discriminators of Racial Disparities in Prostate Cancer.
Trends Cancer. 2016 Mar;2(3):116-120. doi: 10.1016/j.trecan.2016.01.005. Epub 2016 Feb 11.
4
Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.
Cancer Cell. 2017 Apr 10;31(4):576-590.e8. doi: 10.1016/j.ccell.2017.03.004.
5
Targeting noncoding RNAs in disease.
J Clin Invest. 2017 Mar 1;127(3):761-771. doi: 10.1172/JCI84424.
7
A transcriptional target of androgen receptor, miR-421 regulates proliferation and metabolism of prostate cancer cells.
Int J Biochem Cell Biol. 2016 Apr;73:30-40. doi: 10.1016/j.biocel.2016.01.018. Epub 2016 Jan 28.
8
Emerging Roles of SPINK1 in Cancer.
Clin Chem. 2016 Mar;62(3):449-57. doi: 10.1373/clinchem.2015.241513. Epub 2015 Dec 11.
9
The Molecular Taxonomy of Primary Prostate Cancer.
Cell. 2015 Nov 5;163(4):1011-25. doi: 10.1016/j.cell.2015.10.025.
10
SPINK1 promotes colorectal cancer progression by downregulating Metallothioneins expression.
Oncogenesis. 2015 Aug 10;4(8):e162. doi: 10.1038/oncsis.2015.23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验