Suppr超能文献

通过节律复杂度对神经预测误差进行加权:使用失匹配负波的预测编码解释。

Weighting of neural prediction error by rhythmic complexity: A predictive coding account using mismatch negativity.

机构信息

Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Aarhus C, Denmark.

SISSA International School for Advanced Studies, Trieste, Italy.

出版信息

Eur J Neurosci. 2019 Jun;49(12):1597-1609. doi: 10.1111/ejn.14329. Epub 2019 Jan 20.

Abstract

The human brain's ability to extract and encode temporal regularities and to predict the timing of upcoming events is critical for music and speech perception. This work addresses how these mechanisms deal with different levels of temporal complexity, here the number of distinct durations in rhythmic patterns. We use electroencephalography (EEG) to relate the mismatch negativity (MMN), a proxy of neural prediction error, to a measure of information content of rhythmic sequences, the Shannon entropy. Within each of three conditions, participants listened to repeatedly presented standard rhythms of five tones (four inter-onset intervals) and of a given level of entropy: zero (isochronous), medium entropy (two distinct interval durations), or high entropy (four distinct interval durations). Occasionally, the fourth tone was moved forward in time that is it occurred 100 ms (small deviation) or 300 ms early (large deviation). According to the predictive coding framework, high-entropy stimuli are more difficult to model for the brain, resulting in less confident predictions and yielding smaller prediction errors for deviant sounds. Our results support this hypothesis, showing a gradual decrease in MMN amplitude as a function of entropy, but only for small timing deviants. For large timing deviants, in contrast, a modulation of activity in the opposite direction was observed for the earlier N1 component, known to also be sensitive to sudden changes in directed attention. Our results suggest the existence of a fine-grained neural mechanism that weights neural prediction error to the complexity of rhythms and that mostly manifests in the absence of directed attention.

摘要

人类大脑提取和编码时间规律以及预测即将发生事件的时间的能力对于音乐和语音感知至关重要。这项工作探讨了这些机制如何处理不同层次的时间复杂性,这里指的是节奏模式中不同持续时间的数量。我们使用脑电图(EEG)将错配负波(MMN),一种神经预测误差的代表,与节奏序列信息量的度量,即香农熵联系起来。在三个条件中的每一个中,参与者都听了多次呈现的标准节奏,有五个音(四个音间间隔)和给定的熵水平:零(等时)、中等熵(两个不同的间隔持续时间)或高熵(四个不同的间隔持续时间)。偶尔,第四个音会提前 100 毫秒(小偏差)或 300 毫秒(大偏差)。根据预测编码框架,高熵刺激更难被大脑建模,从而导致预测信心降低,并对偏差声音产生较小的预测误差。我们的结果支持了这一假设,表明 MMN 振幅随着熵的增加逐渐减小,但仅适用于小时间偏差。相比之下,对于大时间偏差,相反方向的活动调制,即早期 N1 成分,也被观察到,已知该成分也对定向注意力的突然变化敏感。我们的结果表明存在一种精细的神经机制,该机制将神经预测误差与节奏的复杂性联系起来,并且主要在没有定向注意力的情况下表现出来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验