Suppr超能文献

两个拮抗的 Hippo 信号通路在纤毛虫中设定了中线的分裂平面。

Two Antagonistic Hippo Signaling Circuits Set the Division Plane at the Medial Position in the Ciliate .

机构信息

Department of Cellular Biology, University of Georgia, Athens, Georgia 30602.

Bio 3/Bioinformatics and Molecular Genetics, Faculty of Biology and ZBMZ, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104 Germany.

出版信息

Genetics. 2019 Feb;211(2):651-663. doi: 10.1534/genetics.118.301889. Epub 2018 Dec 28.

Abstract

In a single cell, ciliates maintain a complex pattern of cortical organelles that are arranged along the anteroposterior and circumferential axes. The underlying molecular mechanisms of intracellular pattern formation in ciliates are largely unknown. Ciliates divide by tandem duplication, a process that remodels the parental cell into two daughters aligned head-to-tail. In the mutant of , the segmentation boundary/division plane forms too close to the posterior end of the parental cell, producing a large anterior and a small posterior daughter cell, respectively. We show that encodes a Lats/NDR kinase that marks the posterior segment of the cell cortex, where the division plane does not form in the wild-type. Elo1 acts independently of CdaI, a Hippo/Mst kinase that marks the anterior half of the parental cell, and whose loss shifts the division plane anteriorly. We propose that, in , two antagonistic Hippo circuits focus the segmentation boundary/division plane at the equatorial position, by excluding divisional morphogenesis from the cortical areas that are too close to cell ends.

摘要

在一个单细胞中,纤毛虫维持着一种复杂的皮层细胞器模式,这些细胞器沿着前后和圆周轴排列。纤毛虫细胞内模式形成的潜在分子机制在很大程度上是未知的。纤毛虫通过串联复制进行分裂,这一过程将亲代细胞重塑为头尾对齐的两个子细胞。在 的 突变体中,分割边界/分裂平面形成得太靠近亲代细胞的后端,分别产生大的前子细胞和小的后子细胞。我们表明, 编码一种 Lats/NDR 激酶,该激酶标记细胞皮层的后段,在野生型中,该段不会形成分裂平面。Elo1 独立于 CdaI 发挥作用,CdaI 是 Hippo/Mst 激酶,标记亲代细胞的前半部分,其缺失会使分裂平面向前移动。我们提出,在 中,两个拮抗的 Hippo 回路通过将分裂边界/分裂平面排除在离细胞末端太近的皮质区域之外,将其集中在赤道位置,从而形成分割边界/分裂平面。

相似文献

1
Two Antagonistic Hippo Signaling Circuits Set the Division Plane at the Medial Position in the Ciliate .
Genetics. 2019 Feb;211(2):651-663. doi: 10.1534/genetics.118.301889. Epub 2018 Dec 28.
2
The Hippo Pathway Maintains the Equatorial Division Plane in the Ciliate .
Genetics. 2017 Jun;206(2):873-888. doi: 10.1534/genetics.117.200766. Epub 2017 Apr 16.
4
Global and local functions of the Fused kinase ortholog CdaH in intracellular patterning in Tetrahymena.
J Cell Sci. 2024 Mar 1;137(5). doi: 10.1242/jcs.261256. Epub 2023 Oct 4.
5
Anterior-posterior pattern formation in ciliates.
J Eukaryot Microbiol. 2022 Sep;69(5):e12890. doi: 10.1111/jeu.12890. Epub 2022 Feb 5.
6
Acquisition of cell polarity during cell cycle and oral replacement in Tetrahymena.
Int J Dev Biol. 2008;52(2-3):249-58. doi: 10.1387/ijdb.072350jk.
7
Sas4 links basal bodies to cell division via Hippo signaling.
J Cell Biol. 2020 Aug 3;219(8). doi: 10.1083/jcb.201906183.
8
Mob1: defining cell polarity for proper cell division.
J Cell Sci. 2012 Jan 15;125(Pt 2):516-27. doi: 10.1242/jcs.096610. Epub 2012 Feb 13.

引用本文的文献

1
Left-right cortical interactions drive intracellular pattern formation in the ciliate Tetrahymena.
PLoS Genet. 2025 Jun 2;21(6):e1011735. doi: 10.1371/journal.pgen.1011735. eCollection 2025 Jun.
2
The Role of Membrane-Bound Extracellular Vesicles During Co-Stimulation and Conjugation in the Ciliate .
Microorganisms. 2025 Apr 1;13(4):803. doi: 10.3390/microorganisms13040803.
4
The secretory pathway in Tetrahymena is organized for efficient constitutive secretion at ciliary pockets.
iScience. 2024 Oct 9;27(11):111123. doi: 10.1016/j.isci.2024.111123. eCollection 2024 Nov 15.
5
Structure and dynamics of the contractile vacuole complex in Tetrahymena thermophila.
J Cell Sci. 2023 Nov 15;136(22). doi: 10.1242/jcs.261511. Epub 2023 Nov 27.
6
Global and local functions of the Fused kinase ortholog CdaH in intracellular patterning in Tetrahymena.
J Cell Sci. 2024 Mar 1;137(5). doi: 10.1242/jcs.261256. Epub 2023 Oct 4.
7
A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila.
PLoS Genet. 2022 May 19;18(5):e1010194. doi: 10.1371/journal.pgen.1010194. eCollection 2022 May.
8
Anterior-posterior pattern formation in ciliates.
J Eukaryot Microbiol. 2022 Sep;69(5):e12890. doi: 10.1111/jeu.12890. Epub 2022 Feb 5.
9
Characterization of a MOB1 Homolog in the Apicomplexan Parasite .
Biology (Basel). 2021 Nov 26;10(12):1233. doi: 10.3390/biology10121233.
10
Ciliate cortical organization and dynamics for cell motility: Comparing ciliates and vertebrates.
J Eukaryot Microbiol. 2022 Sep;69(5):e12880. doi: 10.1111/jeu.12880. Epub 2022 Jan 12.

本文引用的文献

1
The Hippo Pathway Maintains the Equatorial Division Plane in the Ciliate .
Genetics. 2017 Jun;206(2):873-888. doi: 10.1534/genetics.117.200766. Epub 2017 Apr 16.
2
Classifying kinase conformations using a machine learning approach.
BMC Bioinformatics. 2017 Feb 2;18(1):86. doi: 10.1186/s12859-017-1506-2.
4
Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools.
Genetics. 2016 Jun;203(2):649-65. doi: 10.1534/genetics.114.169748.
5
Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer.
Cell. 2015 Nov 5;163(4):811-28. doi: 10.1016/j.cell.2015.10.044.
6
Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling.
Genes Dev. 2015 Jul 1;29(13):1416-31. doi: 10.1101/gad.264929.115. Epub 2015 Jun 24.
7
The Structure of an NDR/LATS Kinase-Mob Complex Reveals a Novel Kinase-Coactivator System and Substrate Docking Mechanism.
PLoS Biol. 2015 May 12;13(5):e1002146. doi: 10.1371/journal.pbio.1002146. eCollection 2015 May.
8
The kinase regulator mob1 acts as a patterning protein for stentor morphogenesis.
PLoS Biol. 2014 May 13;12(5):e1001861. doi: 10.1371/journal.pbio.1001861. eCollection 2014 May.
9
Spatiotemporal organization of microbial cells by protein concentration gradients.
Trends Microbiol. 2014 Feb;22(2):65-73. doi: 10.1016/j.tim.2013.11.005. Epub 2013 Dec 14.
10
The regulation of cell size.
Cell. 2013 Sep 12;154(6):1194-205. doi: 10.1016/j.cell.2013.08.053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验