Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden.
Department of Chemistry─Ångström Laboratory, Molecular Biomimetics, Uppsala University, 751 20 Uppsala, Sweden.
J Am Chem Soc. 2022 Aug 3;144(30):13600-13611. doi: 10.1021/jacs.2c03882. Epub 2022 Jul 21.
A semiartificial photosynthesis approach that utilizes enzymes for solar fuel production relies on efficient photosensitizers that should match the enzyme activity and enable long-term stability. Polymer dots (Pdots) are biocompatible photosensitizers that are stable at pH 7 and have a readily modifiable surface morphology. Therefore, Pdots can be considered potential photosensitizers to drive such enzyme-based systems for solar fuel formation. This work introduces and unveils in detail the interaction within the biohybrid assembly composed of binary Pdots and the HydA1 [FeFe]-hydrogenase from . The direct attachment of hydrogenase on the surface of toroid-shaped Pdots was confirmed by agarose gel electrophoresis, cryogenic transmission electron microscopy (Cryo-TEM), and cryogenic electron tomography (Cryo-ET). Ultrafast transient spectroscopic techniques were used to characterize photoinduced excitation and dissociation into charges within Pdots. The study reveals that implementation of a donor-acceptor architecture for heterojunction Pdots leads to efficient subpicosecond charge separation and thus enhances hydrogen evolution (88 460 μmol·g·h). Adsorption of [FeFe]-hydrogenase onto Pdots resulted in a stable biohybrid assembly, where hydrogen production persisted for days, reaching a TON of 37 500 ± 1290 in the presence of a redox mediator. This work represents an example of a homogeneous biohybrid system combining polymer nanoparticles and an enzyme. Detailed spectroscopic studies provide a mechanistic understanding of light harvesting, charge separation, and transport studied, which is essential for building semiartificial photosynthetic systems with efficiencies beyond natural and artificial systems.
一种利用酶生产太阳能燃料的半人工光合作用方法依赖于高效的光敏剂,这些光敏剂应与酶活性相匹配,并具有长期稳定性。聚合物点(Pdots)是一种生物相容性的光敏剂,在 pH 值为 7 时稳定,且表面形态易于修饰。因此,Pdots 可以被认为是潜在的光敏剂,可用于驱动基于酶的太阳能燃料形成的系统。本工作介绍并详细揭示了由二元 Pdots 和 HydA1 [FeFe]-氢化酶组成的生物杂化组装体内部的相互作用。通过琼脂糖凝胶电泳、低温透射电子显微镜(Cryo-TEM)和低温电子断层扫描(Cryo-ET)证实了氢化酶直接附着在类球形 Pdots 的表面上。超快瞬态光谱技术用于表征 Pdots 内光激发和离解为电荷的过程。研究表明,在 Pdots 中实施供体-受体结构的异质结导致高效的亚皮秒电荷分离,从而增强了氢气的产生(88460 μmol·g·h)。[FeFe]-氢化酶吸附到 Pdots 上形成稳定的生物杂化组装体,在存在氧化还原介体的情况下,氢气产生持续数天,达到 37500±1290 的 TON。这项工作代表了一种将聚合物纳米粒子和酶结合在一起的均相生物杂化系统的范例。详细的光谱研究提供了对光捕获、电荷分离和传输的机制理解,这对于构建效率超过自然和人工系统的半人工光合作用系统至关重要。