School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
Open Biol. 2023 Aug;13(8):230166. doi: 10.1098/rsob.230166. Epub 2023 Aug 30.
Encapsulation and compartmentalization are fundamental to the evolution of cellular life, but they also pose a challenge: how to partition the molecules that perform biological functions-the proteins-across impermeable barriers into sub-cellular organelles, and to the outside. The solution lies in the evolution of specialized machines, translocons, found in every biological membrane, which act both as gate and gatekeeper across and into membrane bilayers. Understanding how these translocons operate at the molecular level has been a long-standing ambition of cell biology, and one that is approaching its denouement; particularly in the case of the ubiquitous Sec system. In this review, we highlight the fruits of recent game-changing technical innovations in structural biology, biophysics and biochemistry to present a largely complete mechanism for the bacterial version of the core Sec machinery. We discuss the merits of our model over alternative proposals and identify the remaining open questions. The template laid out by the study of the Sec system will be of immense value for probing the many other translocons found in diverse biological membranes, towards the ultimate goal of altering or impeding their functions for pharmaceutical or biotechnological purposes.
封装和区隔是细胞生命进化的基础,但它们也带来了挑战:如何将执行生物功能的分子——蛋白质——分配到亚细胞细胞器和细胞外,而这些细胞器和细胞外是不可渗透的。解决方案在于进化出了专门的机器——易位子(translocon),它存在于每一种生物膜中,作为跨膜双层的门和守门员。理解这些易位子如何在分子水平上运作,一直是细胞生物学的一个长期目标,而且这个目标正在接近实现;特别是在普遍存在的 Sec 系统的情况下。在这篇综述中,我们强调了结构生物学、生物物理学和生物化学最近具有变革性的技术创新的成果,提出了细菌核心 Sec 机器的大部分完整机制。我们讨论了我们的模型相对于其他替代方案的优点,并确定了仍然存在的问题。Sec 系统研究所建立的模板对于探索存在于不同生物膜中的许多其他易位子将具有巨大的价值,最终目标是改变或阻碍它们的功能,以达到药物或生物技术的目的。