Suppr超能文献

用于不规则组织形状3D打印的可打印天然软骨基质生物墨水的研发。

Development of Printable Natural Cartilage Matrix Bioink for 3D Printing of Irregular Tissue Shape.

作者信息

Jung Chi Sung, Kim Byeong Kook, Lee Junhee, Min Byoung-Hyun, Park Sang-Hyug

机构信息

1Departments of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtonggu, Suwon, 16499 Korea.

2Department of Nature-Inspired Nano Convergence System, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103 Korea.

出版信息

Tissue Eng Regen Med. 2017 Dec 28;15(2):155-162. doi: 10.1007/s13770-017-0104-8. eCollection 2018 Apr.

Abstract

The extracellular matrix (ECM) is known to provide instructive cues for cell attachment, proliferation, differentiation, and ultimately tissue regeneration. The use of decellularized ECM scaffolds for regenerative-medicine approaches is rapidly expanding. In this study, cartilage acellular matrix (CAM)-based bioink was developed to fabricate functional biomolecule-containing scaffolds. The CAM provides an adequate cartilage tissue-favorable environment for chondrogenic differentiation of cells. Conventional manufacturing techniques such as salt leaching, solvent casting, gas forming, and freeze drying when applied to CAM-based scaffolds cannot precisely control the scaffold geometry for mimicking tissue shape. As an alternative to the scaffold fabrication methods, 3D printing was recently introduced in the field of tissue engineering. 3D printing may better control the internal microstructure and external appearance because of the computer-assisted construction process. Hence, applications of the 3D printing technology to tissue engineering are rapidly proliferating. Therefore, printable ECM-based bioink should be developed for 3D structure stratification. The aim of this study was to develop printable natural CAM bioink for 3D printing of a tissue of irregular shape. Silk fibroin was chosen to support the printing of the CAM powder because it can be physically cross-linked and its viscosity can be easily controlled. The newly developed CAM-silk bioink was evaluated regarding printability, cell viability, and tissue differentiation. Moreover, we successfully demonstrated 3D printing of a cartilage-shaped scaffold using only this CAM-silk bioink. Future studies should assess the efficacy of implantation of 3D-printed cartilage-shaped scaffolds.

摘要

众所周知,细胞外基质(ECM)为细胞附着、增殖、分化以及最终的组织再生提供指导性线索。用于再生医学方法的脱细胞ECM支架的应用正在迅速扩展。在本研究中,开发了基于软骨脱细胞基质(CAM)的生物墨水来制造含功能性生物分子的支架。CAM为细胞的软骨分化提供了适宜的软骨组织环境。当将盐析、溶剂浇铸、气体成型和冷冻干燥等传统制造技术应用于基于CAM的支架时,无法精确控制支架几何形状以模拟组织形状。作为支架制造方法的替代方案,3D打印最近被引入组织工程领域。由于计算机辅助构建过程,3D打印可以更好地控制内部微观结构和外观。因此,3D打印技术在组织工程中的应用正在迅速增加。因此,应开发可打印的基于ECM的生物墨水用于3D结构分层。本研究的目的是开发可打印的天然CAM生物墨水用于不规则形状组织的3D打印。选择丝素蛋白来支持CAM粉末的打印,因为它可以进行物理交联且其粘度易于控制。对新开发的CAM-丝生物墨水的可打印性、细胞活力和组织分化进行了评估。此外,我们仅使用这种CAM-丝生物墨水成功展示了软骨形状支架的3D打印。未来的研究应评估3D打印的软骨形状支架植入的效果。

相似文献

1
Development of Printable Natural Cartilage Matrix Bioink for 3D Printing of Irregular Tissue Shape.
Tissue Eng Regen Med. 2017 Dec 28;15(2):155-162. doi: 10.1007/s13770-017-0104-8. eCollection 2018 Apr.
2
ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
Adv Exp Med Biol. 2018;1064:335-353. doi: 10.1007/978-981-13-0445-3_20.
4
Precisely Printable Silk Fibroin/Carboxymethyl Cellulose/Alginate Bioink for 3D Printing.
Polymers (Basel). 2024 Apr 9;16(8):1027. doi: 10.3390/polym16081027.
5
Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111388. doi: 10.1016/j.msec.2020.111388. Epub 2020 Aug 22.
6
3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33684-33696. doi: 10.1021/acsami.9b11644. Epub 2019 Sep 10.
7
Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking.
Acta Biomater. 2016 Mar;33:88-95. doi: 10.1016/j.actbio.2016.01.013. Epub 2016 Jan 14.
8
Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing.
Int J Biol Macromol. 2022 Jul 31;213:317-327. doi: 10.1016/j.ijbiomac.2022.05.123. Epub 2022 May 21.
9
A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering.
Acta Biomater. 2021 Feb;121:193-203. doi: 10.1016/j.actbio.2020.11.029. Epub 2020 Nov 21.
10
Strategies for improving the 3D printability of decellularized extracellular matrix bioink.
Theranostics. 2023 Apr 23;13(8):2562-2587. doi: 10.7150/thno.81785. eCollection 2023.

引用本文的文献

1
[Construction of a novel tissue engineered meniscus scaffold based on low temperature deposition three-dimenisonal printing technology].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2024 Jun 15;38(6):748-754. doi: 10.7507/1002-1892.202402063.
2
3D-bioprinted alginate-based bioink scaffolds with β-tricalcium phosphate for bone regeneration applications.
J Dent Sci. 2024 Apr;19(2):1116-1125. doi: 10.1016/j.jds.2023.12.023. Epub 2024 Jan 12.
4
Decellularization and Their Significance for Tissue Regeneration in the Era of 3D Bioprinting.
ACS Omega. 2024 Feb 6;9(7):7375-7392. doi: 10.1021/acsomega.3c08930. eCollection 2024 Feb 20.
5
Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects.
Bioact Mater. 2023 Oct 4;32:98-123. doi: 10.1016/j.bioactmat.2023.09.017. eCollection 2024 Feb.
6
Application of Cartilage Extracellular Matrix to Enhance Therapeutic Efficacy of Methotrexate.
Tissue Eng Regen Med. 2024 Feb;21(2):209-221. doi: 10.1007/s13770-023-00587-0. Epub 2023 Oct 14.
8
Decellularized Extracellular Matrix for Tissue Engineering (Review).
Sovrem Tekhnologii Med. 2022;14(3):57-68. doi: 10.17691/stm2022.14.3.07. Epub 2022 May 28.
9
Current advancements in bio-ink technology for cartilage and bone tissue engineering.
Bone. 2023 Jun;171:116746. doi: 10.1016/j.bone.2023.116746. Epub 2023 Mar 23.
10
An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications.
Tissue Eng Regen Med. 2022 Oct;19(5):927-960. doi: 10.1007/s13770-022-00459-z. Epub 2022 Jun 4.

本文引用的文献

1
Solid Freeform Techniques Application in Bone Tissue Engineering for Scaffold Fabrication.
Tissue Eng Regen Med. 2017 Apr 28;14(3):187-200. doi: 10.1007/s13770-016-0002-5. eCollection 2017 Jun.
2
Three-dimensional bio-printing equipment technologies for tissue engineering and regenerative medicine.
Tissue Eng Regen Med. 2016 Dec 17;13(6):663-676. doi: 10.1007/s13770-016-0148-1. eCollection 2016 Dec.
3
Three-dimensional cell-based bioprinting for soft tissue regeneration.
Tissue Eng Regen Med. 2016 Dec 17;13(6):647-662. doi: 10.1007/s13770-016-0133-8. eCollection 2016 Dec.
4
Advances in three-dimensional bioprinting for hard tissue engineering.
Tissue Eng Regen Med. 2016 Dec 17;13(6):622-635. doi: 10.1007/s13770-016-0145-4. eCollection 2016 Dec.
5
Current advances in three-dimensional tissue/organ printing.
Tissue Eng Regen Med. 2016 Dec 17;13(6):612-621. doi: 10.1007/s13770-016-8111-8. eCollection 2016 Dec.
6
Electrospun fibrous silk fibroin/poly(L-lactic acid) scaffold for cartilage tissue engineering.
Tissue Eng Regen Med. 2016 Oct 20;13(5):516-526. doi: 10.1007/s13770-016-9099-9. eCollection 2016 Oct.
7
Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554. doi: 10.1080/09205063.2017.1286184. Epub 2017 Feb 5.
8
Designing Biomaterials for 3D Printing.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1679-1693. doi: 10.1021/acsbiomaterials.6b00121. Epub 2016 Apr 13.
9
Processing Techniques and Applications of Silk Hydrogels in Bioengineering.
J Funct Biomater. 2016 Sep 14;7(3):26. doi: 10.3390/jfb7030026.
10
Controlling stem cell behavior with decellularized extracellular matrix scaffolds.
Curr Opin Solid State Mater Sci. 2016 Aug;20(4):193-201. doi: 10.1016/j.cossms.2016.02.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验