Suppr超能文献

多样性中的力量:相同类型嗅觉神经元的功能多样性。

Strength in diversity: functional diversity among olfactory neurons of the same type.

机构信息

Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA.

Integrated Neuroscience Program, University of Nevada, Reno, NV, 89557, USA.

出版信息

J Bioenerg Biomembr. 2019 Feb;51(1):65-75. doi: 10.1007/s10863-018-9779-3. Epub 2019 Jan 2.

Abstract

Most animals depend upon olfaction to find food, mates, and to avoid predators. An animal's olfactory circuit helps it sense its olfactory environment and generate critical behavioral responses. The general architecture of the olfactory circuit, which is conserved across species, is made up of a few different neuronal types including first-order receptor neurons, second- and third-order neurons, and local interneurons. Each neuronal type differs in their morphology, physiology, and neurochemistry. However, several recent studies have suggested that there is intrinsic diversity even among neurons of the same type and that this diversity is important for neural function. In this review, we first examine instances of intrinsic diversity observed among individual types of olfactory neurons. Next, we review potential genetic and experience-based plasticity mechanisms that underlie this diversity. Finally, we consider the implications of intrinsic neuronal diversity for circuit function. Overall, we hope to highlight the importance of intrinsic diversity as a previously underestimated property of circuit function.

摘要

大多数动物依赖嗅觉来寻找食物、伴侣和躲避捕食者。动物的嗅觉回路帮助它感知嗅觉环境并产生关键的行为反应。嗅觉回路的一般结构在物种间是保守的,由几种不同的神经元类型组成,包括第一级受体神经元、第二级和第三级神经元以及局部中间神经元。每种神经元类型在形态、生理和神经化学方面都有所不同。然而,最近的几项研究表明,即使是同一类型的神经元之间也存在内在的多样性,这种多样性对于神经功能很重要。在这篇综述中,我们首先检查了在单个类型的嗅觉神经元中观察到的内在多样性的实例。接下来,我们回顾了潜在的遗传和经验依赖性可塑性机制,这些机制是这种多样性的基础。最后,我们考虑了内在神经元多样性对回路功能的影响。总的来说,我们希望强调内在多样性作为电路功能的一个以前被低估的属性的重要性。

相似文献

1
Strength in diversity: functional diversity among olfactory neurons of the same type.
J Bioenerg Biomembr. 2019 Feb;51(1):65-75. doi: 10.1007/s10863-018-9779-3. Epub 2019 Jan 2.
3
Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb.
J Neurosci. 2016 Aug 24;36(34):8856-71. doi: 10.1523/JNEUROSCI.0794-16.2016.
4
Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period.
J Neurosci. 2021 Feb 10;41(6):1218-1241. doi: 10.1523/JNEUROSCI.2167-20.2020. Epub 2021 Jan 5.
5
Temporal Dynamics of Inhalation-Linked Activity across Defined Subpopulations of Mouse Olfactory Bulb Neurons Imaged .
eNeuro. 2019 Jun 27;6(3). doi: 10.1523/ENEURO.0189-19.2019. Print 2019 May/Jun.
6
Interneuron Diversity: Toward a Better Understanding of Interneuron Development In the Olfactory System.
J Exp Neurosci. 2019 Apr 7;13:1179069519826056. doi: 10.1177/1179069519826056. eCollection 2019.
7
Identified Serotonergic Modulatory Neurons Have Heterogeneous Synaptic Connectivity within the Olfactory System of .
J Neurosci. 2017 Aug 2;37(31):7318-7331. doi: 10.1523/JNEUROSCI.0192-17.2017. Epub 2017 Jun 28.
8
Subpopulations of Projection Neurons in the Olfactory Bulb.
Front Neural Circuits. 2020 Aug 28;14:561822. doi: 10.3389/fncir.2020.561822. eCollection 2020.
9
Development of wiring specificity in the olfactory system.
Curr Opin Neurobiol. 2006 Feb;16(1):67-73. doi: 10.1016/j.conb.2005.12.002. Epub 2006 Jan 11.
10
Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs.
J Neurosci. 2023 Jan 4;43(1):28-55. doi: 10.1523/JNEUROSCI.0884-22.2022. Epub 2022 Nov 29.

引用本文的文献

1
Response Plasticity of Olfactory Sensory Neurons.
Int J Mol Sci. 2024 Jun 28;25(13):7125. doi: 10.3390/ijms25137125.
2
Mechanism underlying starvation-dependent modulation of olfactory behavior in Drosophila larva.
Sci Rep. 2020 Feb 20;10(1):3119. doi: 10.1038/s41598-020-60098-z.

本文引用的文献

1
Diverse populations of local interneurons integrate into the Drosophila adult olfactory circuit.
Nat Commun. 2018 Jun 8;9(1):2232. doi: 10.1038/s41467-018-04675-x.
2
Stimulus dependent diversity and stereotypy in the output of an olfactory functional unit.
Nat Commun. 2018 Apr 9;9(1):1347. doi: 10.1038/s41467-018-03837-1.
3
Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb.
eNeuro. 2017 Sep 26;4(5). doi: 10.1523/ENEURO.0129-17.2017. eCollection 2017 Sep-Oct.
4
Odorant Receptor Sensitivity Modulation in .
J Neurosci. 2017 Sep 27;37(39):9465-9473. doi: 10.1523/JNEUROSCI.1573-17.2017. Epub 2017 Sep 4.
5
Take time: odor coding capacity across sensory neurons increases over time in Drosophila.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Dec;203(12):959-972. doi: 10.1007/s00359-017-1209-1. Epub 2017 Aug 29.
6
Olfactory coding from the periphery to higher brain centers in the Drosophila brain.
BMC Biol. 2017 Jun 30;15(1):56. doi: 10.1186/s12915-017-0389-z.
7
Morphological Diversity of C. elegans Sensory Cilia Instructed by the Differential Expression of an Immunoglobulin Domain Protein.
Curr Biol. 2017 Jun 19;27(12):1782-1790.e5. doi: 10.1016/j.cub.2017.05.006. Epub 2017 Jun 1.
9
Organization and function of odorant binding proteins.
Elife. 2016 Nov 15;5:e20242. doi: 10.7554/eLife.20242.
10
Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila Antennal Lobe.
Cell Rep. 2016 Sep 20;16(12):3401-3413. doi: 10.1016/j.celrep.2016.08.063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验