School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 6009, Crawley, WA, Australia.
Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany.
Plant J. 2019 May;98(3):405-417. doi: 10.1111/tpj.14227. Epub 2019 Feb 14.
Complex II [succinate dehydrogenase (succinate-ubiquinone oxidoreductase); EC 1.3.5.1; SDH] is the only enzyme shared by both the electron transport chain and the tricarboxylic acid (TCA) cycle in mitochondria. Complex II in plants is considered unusual because of its accessory subunits (SDH5-SDH8), in addition to the catalytic subunits of SDH found in all eukaryotes (SDH1-SDH4). Here, we review compositional and phylogenetic analysis and biochemical dissection studies to both clarify the presence and propose a role for these subunits. We also consider the wider functional and phylogenetic evidence for SDH assembly factors and the reports from plants on the control of SDH1 flavination and SDH1-SDH2 interaction. Plant complex II has been shown to influence stomatal opening, the plant defense response and reactive oxygen species-dependent stress responses. Signaling molecules such as salicyclic acid (SA) and nitric oxide (NO) are also reported to interact with the ubiquinone (UQ) binding site of SDH, influencing signaling transduction in plants. Future directions for SDH research in plants and the specific roles of its different subunits and assembly factors are suggested, including the potential for reverse electron transport to explain the succinate-dependent production of reactive oxygen species in plants and new avenues to explore the evolution of plant mitochondrial complex II and its utility.
复合物 II [琥珀酸脱氢酶(琥珀酸-泛醌氧化还原酶);EC 1.3.5.1;SDH] 是线粒体中电子传递链和三羧酸 (TCA) 循环共有的唯一酶。由于其辅助亚基(SDH5-SDH8),除了所有真核生物中发现的 SDH 的催化亚基(SDH1-SDH4),植物中的复合物 II 被认为是不寻常的。在这里,我们回顾了组成和系统发育分析以及生化剖析研究,以阐明这些亚基的存在并提出其作用。我们还考虑了更广泛的功能和系统发育证据,以及关于 SDH 组装因子的报告,以及关于 SDH1 黄素化和 SDH1-SDH2 相互作用控制的植物报告。已表明植物复合物 II 会影响气孔开放、植物防御反应和活性氧依赖性应激反应。还报道了信号分子,如水杨酸 (SA) 和一氧化氮 (NO),与 SDH 的泛醌 (UQ) 结合位点相互作用,影响植物中的信号转导。建议了植物中 SDH 研究的未来方向以及其不同亚基和组装因子的特定作用,包括反向电子传递的潜力,以解释植物中琥珀酸盐依赖的活性氧的产生,以及探索植物线粒体复合物 II 的进化及其用途的新途径。