Kirch Anton, Gmelch Max, Reineke Sebastian
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied Physics , Technische Universität Dresden , 01069 Dresden , Germany.
Center for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01069 Dresden , Germany.
J Phys Chem Lett. 2019 Jan 17;10(2):310-315. doi: 10.1021/acs.jpclett.8b03668. Epub 2019 Jan 9.
For almost 70 years, Förster resonance energy transfer (FRET) has been investigated, implemented into nowadays experimental nanoscience techniques, and considered in a manifold of optics, photonics, and optoelectronics applications. Here, we demonstrate for the first time simultaneous and efficient energy transfer from both donating singlet and triplet states of a single photoluminescent molecular species. Using a biluminescent donor that can emit with high yield from both excited states at room temperature allows application of the FRET framework to such a bimodal system. It serves as an exclusive model system where the spatial origin of energy transfer is exactly the same for both donating spin states involved. Of paramount significance are the facts that both transfers can easily be observed by eye and that Förster theory is successfully applied to state lifetimes spanning over 8 orders of magnitude.
近70年来,人们一直在研究福斯特共振能量转移(FRET),将其应用于当今的实验纳米科学技术中,并在众多光学、光子学和光电子学应用中加以考虑。在此,我们首次展示了来自单个光致发光分子物种的供体单重态和三重态的同时且高效的能量转移。使用一种在室温下能够从两个激发态高效发射的双发光供体,使得FRET框架能够应用于这样的双峰系统。它作为一个独特的模型系统,其中涉及的两个供体自旋态的能量转移空间起源完全相同。至关重要的是,这两种转移都可以通过肉眼轻松观察到,并且福斯特理论成功应用于跨越8个数量级的态寿命。