Suppr超能文献

通过整合基因组变异和肌肉基因表达谱分析探索内在心肺功能适应性的潜在生物学机制。

Exploring the underlying biology of intrinsic cardiorespiratory fitness through integrative analysis of genomic variants and muscle gene expression profiling.

机构信息

Human Genomics Laboratory, Pennington Biomedical Research Center , Baton Rouge, Louisiana.

Cardiovascular and Metabolic Disorders Program and Centre for Computational Biology, Duke-National University of Singapore Medical School , Singapore.

出版信息

J Appl Physiol (1985). 2019 May 1;126(5):1292-1314. doi: 10.1152/japplphysiol.00035.2018. Epub 2019 Jan 3.

Abstract

Intrinsic cardiorespiratory fitness (CRF) is defined as the level of CRF in the sedentary state. There are large individual differences in intrinsic CRF among sedentary adults. The physiology of variability in CRF has received much attention, but little is known about the genetic and molecular mechanisms that impact intrinsic CRF. These issues were explored in the present study by interrogating intrinsic CRF-associated DNA sequence variation and skeletal muscle gene expression data from the HERITAGE Family Study through an integrative bioinformatics guided approach. A combined analytic strategy involving genetic association, pathway enrichment, tissue-specific network structure, cis-regulatory genome effects, and expression quantitative trait loci was used to select and rank genes through a variation-adjusted weighted ranking scheme. Prioritized genes were further interrogated for corroborative evidence from knockout mouse phenotypes and relevant physiological traits from the HERITAGE cohort. The mean intrinsic V̇o was 33.1 ml O·kg·min (SD = 8.8) for the sample of 493 sedentary adults. Suggestive evidence was found for gene loci related to cardiovascular physiology (, , , and ), hematopoiesis (, , , and ), skeletal muscle phenotypes (, , , and ), and metabolism (, , , , , , , and ). Supportive evidence for a role of several of these loci was uncovered via association between DNA variants and muscle gene expression levels with exercise cardiovascular and muscle physiological traits. This initial effort to define the underlying molecular substrates of intrinsic CRF warrants further studies based on appropriate cohorts and study designs, complemented by functional investigations. Intrinsic cardiorespiratory fitness (CRF) is measured in the sedentary state and is highly variable among sedentary adults. The physiology of variability in intrinsic cardiorespiratory fitness has received much attention, but little is known about the genetic and molecular mechanisms that impact intrinsic CRF. These issues were explored computationally in the present study, with further corroborative evidence obtained from analysis of phenotype data from knockout mouse models and human cardiovascular and skeletal muscle measurements.

摘要

内在心肺功能适应性(CRF)定义为静息状态下的 CRF 水平。久坐成年人的内在 CRF 存在很大的个体差异。CRF 变异性的生理学已经引起了广泛关注,但对于影响内在 CRF 的遗传和分子机制知之甚少。本研究通过综合生物信息学指导的方法,从 HERITAGE 家族研究中内在 CRF 相关的 DNA 序列变异和骨骼肌基因表达数据中探索了这些问题。通过遗传关联、途径富集、组织特异性网络结构、顺式调控基因组效应和表达数量性状位点的综合分析策略,使用变异调整加权排序方案选择和对基因进行排名。通过对敲除小鼠表型和 HERITAGE 队列中相关生理特征的综合分析,对优先考虑的基因进行了进一步的验证。该样本中 493 名久坐成年人的平均内在 V̇o 为 33.1 ml O·kg·min(SD=8.8)。发现与心血管生理学(、、、)、造血(、、、)、骨骼肌表型(、、、)和代谢(、、、、、、、)相关的基因座存在基因位点的提示性证据。通过与肌肉基因表达水平与运动心血管和肌肉生理特征相关的 DNA 变异之间的关联,发现了这些基因座中几个基因的作用的支持证据。这项定义内在 CRF 潜在分子基础的初步工作需要基于适当的队列和研究设计进行进一步研究,并辅以功能研究。内在心肺功能适应性(CRF)在静息状态下进行测量,并且在久坐成年人中具有高度可变性。内在心肺功能适应性变异性的生理学已经引起了广泛关注,但对于影响内在 CRF 的遗传和分子机制知之甚少。这些问题在本研究中通过计算进行了探索,并从敲除小鼠模型和人类心血管和骨骼肌测量的表型数据分析中获得了进一步的验证证据。

相似文献

1
Exploring the underlying biology of intrinsic cardiorespiratory fitness through integrative analysis of genomic variants and muscle gene expression profiling.
J Appl Physiol (1985). 2019 May 1;126(5):1292-1314. doi: 10.1152/japplphysiol.00035.2018. Epub 2019 Jan 3.
2
The combination of cardiorespiratory fitness and muscle strength, and mortality risk.
Eur J Epidemiol. 2018 Oct;33(10):953-964. doi: 10.1007/s10654-018-0384-x. Epub 2018 Mar 28.
4
Omics-driven investigation of the biology underlying intrinsic submaximal working capacity and its trainability.
Physiol Genomics. 2023 Nov 1;55(11):517-543. doi: 10.1152/physiolgenomics.00163.2022. Epub 2023 Sep 4.
5
Cardiorespiratory and muscular fitness associations with older adolescent cognitive control.
J Sport Health Sci. 2021 Jan;10(1):82-90. doi: 10.1016/j.jshs.2020.05.004. Epub 2020 May 20.

引用本文的文献

1
Sex-specific Genetic Determinants of Right Ventricular Structure and Function.
Am J Respir Crit Care Med. 2024 Oct 7;211(1):113-23. doi: 10.1164/rccm.202404-0721OC.
3
Omics-driven investigation of the biology underlying intrinsic submaximal working capacity and its trainability.
Physiol Genomics. 2023 Nov 1;55(11):517-543. doi: 10.1152/physiolgenomics.00163.2022. Epub 2023 Sep 4.
4
Causal associations between cardiorespiratory fitness and type 2 diabetes.
Nat Commun. 2023 Jul 3;14(1):3904. doi: 10.1038/s41467-023-38234-w.
5
DMRT2 Interacts With FXR and Improves Insulin Resistance in Adipocytes and a Mouse Model.
Front Endocrinol (Lausanne). 2022 Feb 17;12:723623. doi: 10.3389/fendo.2021.723623. eCollection 2021.
6
Multiomics Approach to Precision Sports Nutrition: Limits, Challenges, and Possibilities.
Front Nutr. 2021 Dec 14;8:796360. doi: 10.3389/fnut.2021.796360. eCollection 2021.
7
Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle.
Front Sports Act Living. 2021 Dec 3;3:685845. doi: 10.3389/fspor.2021.685845. eCollection 2021.
8
Human plasma proteomic profiles indicative of cardiorespiratory fitness.
Nat Metab. 2021 Jun;3(6):786-797. doi: 10.1038/s42255-021-00400-z. Epub 2021 May 27.
9
Understanding the Relationship between Intrinsic Cardiorespiratory Fitness and Serum and Skeletal Muscle Metabolomics Profile.
J Proteome Res. 2021 May 7;20(5):2397-2409. doi: 10.1021/acs.jproteome.0c00905. Epub 2021 Apr 28.

本文引用的文献

1
The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks.
Cell Rep. 2017 Nov 7;21(6):1507-1520. doi: 10.1016/j.celrep.2017.10.040.
2
Genetic effects on gene expression across human tissues.
Nature. 2017 Oct 11;550(7675):204-213. doi: 10.1038/nature24277.
3
Convergence between biological, behavioural and genetic determinants of obesity.
Nat Rev Genet. 2017 Dec;18(12):731-748. doi: 10.1038/nrg.2017.72. Epub 2017 Oct 9.
4
Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advances Since 2009.
Prog Cardiovasc Dis. 2017 Jun-Jul;60(1):11-20. doi: 10.1016/j.pcad.2017.03.001. Epub 2017 Mar 9.
5
An atlas of human long non-coding RNAs with accurate 5' ends.
Nature. 2017 Mar 9;543(7644):199-204. doi: 10.1038/nature21374. Epub 2017 Mar 1.
6
Biology of VO max: looking under the physiology lamp.
Acta Physiol (Oxf). 2017 Jun;220(2):218-228. doi: 10.1111/apha.12827. Epub 2016 Nov 25.
8
Genomic and transcriptomic predictors of response levels to endurance exercise training.
J Physiol. 2017 May 1;595(9):2931-2939. doi: 10.1113/JP272559. Epub 2016 Jul 3.
9
GIANT API: an application programming interface for functional genomics.
Nucleic Acids Res. 2016 Jul 8;44(W1):W587-92. doi: 10.1093/nar/gkw289. Epub 2016 Apr 20.
10
Genetic Association-Guided Analysis of Gene Networks for the Study of Complex Traits.
Circ Cardiovasc Genet. 2016 Apr;9(2):179-84. doi: 10.1161/CIRCGENETICS.115.001181.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验