Suppr超能文献

有限元方法与边界元快速多极方法在模拟经颅磁刺激(TMS)问题中的比较性能。

Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS).

机构信息

ECE Department, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America.

出版信息

J Neural Eng. 2019 Apr;16(2):024001. doi: 10.1088/1741-2552/aafbb9. Epub 2019 Jan 3.

Abstract

OBJECTIVE

A study pertinent to the numerical modeling of cortical neurostimulation is conducted in an effort to compare the performance of the finite element method (FEM) and an original formulation of the boundary element fast multipole method (BEM-FMM) at matched computational performance metrics.

APPROACH

We consider two problems: (i) a canonic multi-sphere geometry and an external magnetic-dipole excitation where the analytical solution is available and; (ii) a problem with realistic head models excited by a realistic coil geometry. In the first case, the FEM algorithm tested is a fast open-source getDP solver running within the SimNIBS 2.1.1 environment. In the second case, a high-end commercial FEM software package ANSYS Maxwell 3D is used. The BEM-FMM method runs in the MATLAB 2018a environment.

MAIN RESULTS

In the first case, we observe that the BEM-FMM algorithm gives a smaller solution error for all mesh resolutions and runs significantly faster for high-resolution meshes when the number of triangular facets exceeds approximately 0.25 M. We present other relevant simulation results such as volumetric mesh generation times for the FEM, time necessary to compute the potential integrals for the BEM-FMM, and solution performance metrics for different hardware/operating system combinations. In the second case, we observe an excellent agreement for electric field distribution across different cranium compartments and, at the same time, a speed improvement of three orders of magnitude when the BEM-FMM algorithm used.

SIGNIFICANCE

This study may provide a justification for anticipated use of the BEM-FMM algorithm for high-resolution realistic transcranial magnetic stimulation scenarios.

摘要

目的

进行皮质神经刺激的数值建模研究,以努力比较有限元方法(FEM)和边界元快速多极方法(BEM-FMM)的原始公式在匹配的计算性能指标上的性能。

方法

我们考虑两个问题:(i)具有多球体几何形状和外部磁偶极子激励的标准模型,其中存在解析解;(ii)具有由实际线圈几何形状激励的真实头部模型的问题。在第一种情况下,测试的 FEM 算法是在 SimNIBS 2.1.1 环境中运行的快速开源 getDP 求解器。在第二种情况下,使用高端商业 FEM 软件包 ANSYS Maxwell 3D。BEM-FMM 方法在 MATLAB 2018a 环境中运行。

主要结果

在第一种情况下,我们观察到对于所有网格分辨率,BEM-FMM 算法给出的解误差较小,并且当三角形面的数量超过大约 0.25M 时,对于高分辨率网格,运行速度明显更快。我们还展示了其他相关的模拟结果,例如 FEM 的体网格生成时间、BEM-FMM 的位势积分计算所需的时间以及不同硬件/操作系统组合的解决方案性能指标。在第二种情况下,我们观察到不同颅骨隔间的电场分布非常吻合,同时,当使用 BEM-FMM 算法时,速度提高了三个数量级。

意义

这项研究可能为预期使用 BEM-FMM 算法进行高分辨率的真实经颅磁刺激场景提供依据。

相似文献

4
Modeling transcranial magnetic stimulation coil with magnetic cores.
J Neural Eng. 2023 Jan 25;20(1):016028. doi: 10.1088/1741-2552/acae0d.
5
A fast direct solver for surface-based whole-head modeling of transcranial magnetic stimulation.
Res Sq. 2023 Jul 10:rs.3.rs-3079433. doi: 10.21203/rs.3.rs-3079433/v1.
7
Accurate TMS Head Modeling: Interfacing SimNIBS and BEM-FMM in a MATLAB-Based Module.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5326-5329. doi: 10.1109/EMBC44109.2020.9175802.
8
A Quasi-Static Boundary Element Approach With Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2675-2683. doi: 10.1109/TBME.2018.2813261. Epub 2018 Mar 7.
9
Conditions for numerically accurate TMS electric field simulation.
Brain Stimul. 2020 Jan-Feb;13(1):157-166. doi: 10.1016/j.brs.2019.09.015. Epub 2019 Oct 3.

引用本文的文献

1
Involvement of aSPOC in the Online Updating of Reach-to-Grasp to Mechanical Perturbations of Hand Transport.
J Neurosci. 2025 Mar 19;45(12):e0173242025. doi: 10.1523/JNEUROSCI.0173-24.2025.
2
Novel Volume Integral Equation Approach for Low-Frequency E-Field Dosimetry of Transcranial Magnetic Stimulation.
IEEE Trans Magn. 2024 Dec;60(12). doi: 10.1109/tmag.2024.3486081. Epub 2024 Oct 24.
3
A survey on integral equations for bioelectric modeling.
Phys Med Biol. 2024 Aug 28;69(17). doi: 10.1088/1361-6560/ad66a9.
4
A review of algorithms and software for real-time electric field modeling techniques for transcranial magnetic stimulation.
Biomed Eng Lett. 2024 Mar 29;14(3):393-405. doi: 10.1007/s13534-024-00373-4. eCollection 2024 May.
5
A fast direct solver for surface-based whole-head modeling of transcranial magnetic stimulation.
Sci Rep. 2023 Oct 31;13(1):18657. doi: 10.1038/s41598-023-45602-5.
8
Computation of transcranial magnetic stimulation electric fields using self-supervised deep learning.
Neuroimage. 2022 Dec 1;264:119705. doi: 10.1016/j.neuroimage.2022.119705. Epub 2022 Oct 21.
9
Devices and Technology in Transcranial Magnetic Stimulation: A Systematic Review.
Brain Sci. 2022 Sep 9;12(9):1218. doi: 10.3390/brainsci12091218.
10
Bioelectromagnetism in Human Brain Research: New Applications, New Questions.
Neuroscientist. 2023 Feb;29(1):62-77. doi: 10.1177/10738584211054742. Epub 2021 Dec 7.

本文引用的文献

2
Impact of non-brain anatomy and coil orientation on inter- and intra-subject variability in TMS at midline.
Clin Neurophysiol. 2018 Sep;129(9):1873-1883. doi: 10.1016/j.clinph.2018.04.749. Epub 2018 Jul 6.
3
A Quasi-Static Boundary Element Approach With Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2675-2683. doi: 10.1109/TBME.2018.2813261. Epub 2018 Mar 7.
4
Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art.
Neuroimage. 2018 Jul 1;174:587-598. doi: 10.1016/j.neuroimage.2018.03.001. Epub 2018 Mar 12.
5
The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem.
Front Neurosci. 2018 Feb 2;12:30. doi: 10.3389/fnins.2018.00030. eCollection 2018.
6
Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop.
Brain Stimul. 2018 May-Jun;11(3):465-480. doi: 10.1016/j.brs.2017.12.008. Epub 2017 Dec 29.
7
Where and what TMS activates: Experiments and modeling.
Brain Stimul. 2018 Jan-Feb;11(1):166-174. doi: 10.1016/j.brs.2017.09.011. Epub 2017 Sep 27.
8
The ICVSIE: A General Purpose Integral Equation Method for Bio-Electromagnetic Analysis.
IEEE Trans Biomed Eng. 2018 Mar;65(3):565-574. doi: 10.1109/TBME.2017.2704540. Epub 2017 May 16.
9
COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.
J Neurosci Methods. 2017 Feb 1;277:56-62. doi: 10.1016/j.jneumeth.2016.12.008. Epub 2016 Dec 16.
10
Integral equations and boundary-element solution for static potential in a general piece-wise homogeneous volume conductor.
Phys Med Biol. 2016 Nov 21;61(22):N606-N617. doi: 10.1088/0031-9155/61/22/N606. Epub 2016 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验