Leibniz Institute of Polymer Research Dresden , Hohe Straße 6 , 01069 Dresden , Germany.
Center for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , Dresden 01062 , Germany.
ACS Appl Mater Interfaces. 2019 Jan 30;11(4):4159-4168. doi: 10.1021/acsami.8b15033. Epub 2019 Jan 15.
Highly efficient 2D (interfacial) doping of organic semiconductors, poly(3-hexylthiophene) (P3HT) and TIPS-pentacene, was achieved by a polyelectrolyte-supported layer-by-layer assembly of the dual-mode functional dopant CN6-CPK, having an anionic group for its fixation onto oppositely charged surfaces/molecules as well as electron-deficient groups providing its p-doping ability. Polyelectrolyte-supported dopant layers were used to generate conductive channels at the bottom or at the top of semiconducting films. Unlike to the case of sequentially processed P3HT films doped by F4TCNQ ( Moulé , J. Chem. Mater. 2015 , 27 , 5765 ; Koech , P. K. J. Mater. Chem. C 2013 , 1 , 1876 ; Schwartz , B. J. J. Phys. Chem. Lett. 2015 , 6 , 4786 ), the use of more polar CN6-CPK dopant and ultrathin polycation separation interlayer enables predominantly interfacial kind of doping placement with no or minimal intercalation of the dopant into the semiconductor bulk. The layered structure of the doped film was proved by transmission electron microscopy of the cross-section and it agrees well with other data obtained in this work. The interfacial doping enabled an impressive conductivity of 13 S/cm even for ultrathin P3HT films. We propose to explain the superior efficiency of the interfacial doping compared to the bulk doping in terms of unperturbed morphology of the semiconductor and high mobility of charge carriers, which are spatially separated from the dopant phase.
通过将双模式功能掺杂剂 CN6-CPK 的聚电解质支持的层层组装,实现了有机半导体聚 3-己基噻吩 (P3HT) 和 TIPS-并五苯的高效 2D(界面)掺杂,该掺杂剂具有阴离子基团,用于固定在带相反电荷的表面/分子上,以及缺电子基团,提供其 p 掺杂能力。聚电解质支持的掺杂剂层用于在半导体膜的底部或顶部生成导电通道。与通过 F4TCNQ(Moulé,J. Chem. Mater. 2015, 27, 5765; Koech, P. K. J. Mater. Chem. C 2013, 1, 1876; Schwartz, B. J. J. Phys. Chem. Lett. 2015, 6, 4786)顺序处理掺杂的 P3HT 膜的情况不同,使用更极性的 CN6-CPK 掺杂剂和超薄聚阳离子分离层能够实现主要是界面类型的掺杂放置,而掺杂剂几乎没有或没有进入半导体体相的插层。通过对截面的透射电子显微镜证实了掺杂膜的层状结构,并且与本工作中获得的其他数据吻合良好。界面掺杂甚至可以使超薄 P3HT 薄膜具有令人印象深刻的 13 S/cm 的电导率。我们提出,与体相掺杂相比,界面掺杂的优越效率可以根据半导体未被干扰的形态和电荷载流子的高迁移率来解释,电荷载流子与掺杂相空间分离。