Seidel Keli Fabiana, Lungwitz Dominique, Opitz Andreas, Krüger Thomas, Behrends Jan, Marder Seth R, Koch Norbert
Physics Department, Universidade Tecnológica Federal do Paraná, 80230-901 Curitiba, Brazil.
Institut für Physik & IRIS Adlershof, Humboldt Universität zu Berlin, 12489 Berlin, Germany.
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28801-28807. doi: 10.1021/acsami.0c05857. Epub 2020 Jun 10.
The use of polyethylenimine (PEI) as a thin interlayer between cathodes and organic semiconductors in order to reduce interfacial Ohmic losses has become an important approach in organic electronics. It has also been shown that such interlayers can form spontaneously because of vertical phase separation when spin-coating a blended solution of PEI and the semiconductor. Furthermore, bulk doping of semiconducting polymers by PEI has been claimed. However, to our knowledge, a clear delineation of interfacial from bulk effects has not been published. Here, we report a study on thin films formed by spin-coating blended solutions of PEI and poly{[,'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T)] on indium tin oxide. We observed the vertical phase separation in such films, where PEI accumulates at the bottom and the top, sandwiching the semiconductor layer. The PEI interlayer on ITO reduces the electron injection barrier to the minimum value determined by Fermi level pinning, which, in turn, reduces the contact resistance by 5 orders of magnitude. Although we find no evidence for doping-induced polarons in P(NDI2OD-T) upon mixing with PEI from optical absorption, more sensitive electron paramagnetic resonance measurements provide evidence for doping and an increased carrier density, at a very low level. This, in conjunction with an increased charge carrier mobility due to trap filling, results in an increase in the mixed polymer conductivity by 4 orders of magnitude relative to pure P(NDI2OD-T). Consequently, both interfacial and bulk effects occur with notable magnitude in thin films formed from blended semiconductor polymer/PEI solution. Thus, this facile one-step procedure to form PEI interlayers must be applied with attention, as modification of the bulk semiconductor polymer (here doping) may occur simultaneously and might go un-noticed if not examined carefully.
在阴极与有机半导体之间使用聚乙烯亚胺(PEI)作为薄中间层以降低界面欧姆损耗,已成为有机电子学中的一种重要方法。研究还表明,当旋涂PEI与半导体的混合溶液时,由于垂直相分离,这种中间层能够自发形成。此外,有人声称PEI对半导体聚合物有本体掺杂作用。然而,据我们所知,尚未有关于界面效应与本体效应的清晰区分的报道。在此,我们报告了一项关于通过旋涂PEI与聚{[,'-双(2-辛基十二烷基)萘-1,4,5,8-双(二甲酰亚胺)-2,6-二基]-alt-5,5'-(2,2'-联噻吩)}[P(NDI2OD-T)]的混合溶液在氧化铟锡上形成薄膜的研究。我们观察到此类薄膜中的垂直相分离,其中PEI在底部和顶部积累,将半导体层夹在中间。ITO上的PEI中间层将电子注入势垒降低到由费米能级钉扎所确定的最小值,这反过来又使接触电阻降低了5个数量级。尽管从光吸收方面我们未发现与PEI混合后P(NDI2OD-T)中存在掺杂诱导极化子的证据,但更灵敏的电子顺磁共振测量提供了掺杂以及载流子密度增加的证据,不过载流子密度增加的水平非常低。这与由于陷阱填充导致的电荷载流子迁移率增加相结合,使得混合聚合物的电导率相对于纯P(NDI2OD-T)提高了4个数量级。因此,在由半导体聚合物/PEI混合溶液形成的薄膜中,界面效应和本体效应都很显著。所以,在应用这种形成PEI中间层简便的一步法时必须加以注意,因为可能会同时发生本体半导体聚合物的改性(此处为掺杂),如果不仔细检查可能会被忽视。