Department of Physics, University of California, Berkeley, California 94720, USA.
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Phys Rev Lett. 2018 Dec 14;121(24):246402. doi: 10.1103/PhysRevLett.121.246402.
Characterizing the local internal environment surrounding solid-state spin defects is crucial to harnessing them as nanoscale sensors of external fields. This is especially germane to the case of defect ensembles which can exhibit a complex interplay between interactions, internal fields, and lattice strain. Working with the nitrogen-vacancy (NV) center in diamond, we demonstrate that local electric fields dominate the magnetic resonance behavior of NV ensembles at a low magnetic field. We introduce a simple microscopic model that quantitatively captures the observed spectra for samples with NV concentrations spanning more than two orders of magnitude. Motivated by this understanding, we propose and implement a novel method for the nanoscale localization of individual charges within the diamond lattice; our approach relies upon the fact that the charge induces a NV dark state which depends on the electric field orientation.
表征固态自旋缺陷周围的局部内环境对于利用它们作为外部场的纳米尺度传感器至关重要。对于缺陷集合体的情况尤其如此,因为它们可以表现出相互作用、内部场和晶格应变之间的复杂相互作用。我们使用金刚石中的氮空位(NV)中心,证明了在低磁场下局部电场主导 NV 集合体的磁共振行为。我们引入了一个简单的微观模型,该模型可以定量捕获 NV 浓度跨越两个数量级以上的样品的观察到的光谱。基于这种理解,我们提出并实现了一种在金刚石晶格内对单个电荷进行纳米尺度定位的新方法;我们的方法依赖于电荷诱导 NV 暗态这一事实,该暗态取决于电场方向。