Smith Joe A, Zhang Dandan, Balram Krishna C
Quantum Engineering Technology Labs and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, BS8 1FD, UK.
Bristol Robotics Laboratory and Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TW, UK.
Adv Sci (Weinh). 2024 Jan;11(2):e2304449. doi: 10.1002/advs.202304449. Epub 2023 Nov 17.
Developing practical quantum technologies will require the exquisite manipulation of fragile systems in a robust and repeatable way. As quantum technologies move toward real world applications, from biological sensing to communication in space, increasing experimental complexity introduces constraints that can be alleviated by the introduction of new technologies. Robotics has shown tremendous progress in realizing increasingly smart, autonomous, and highly dexterous machines. Here, a robotic arm equipped with a magnet is demonstrated to sensitize an NV center quantum magnetometer in challenging conditions unachievable with standard techniques. Vector magnetic fields are generated with 1° angular and 0.1 mT amplitude accuracy and determine the orientation of a single stochastically-aligned spin-based sensor in a constrained physical environment. This work opens up the prospect of integrating robotics across many quantum degrees of freedom in constrained settings, allowing for increased prototyping speed, control, and robustness in quantum technology applications.
开发实用的量子技术需要以稳健且可重复的方式对脆弱系统进行精确操控。随着量子技术朝着实际应用发展,从生物传感到太空通信,实验复杂性的增加带来了一些限制,而引入新技术可以缓解这些限制。机器人技术在实现日益智能、自主和高度灵巧的机器方面已取得了巨大进展。在此,展示了一个配备磁铁的机器人手臂,它能在标准技术无法实现的具有挑战性的条件下使氮空位(NV)中心量子磁力计敏感化。矢量磁场以1°的角度精度和0.1 mT的幅度精度生成,并在受限的物理环境中确定单个随机排列的基于自旋的传感器的方向。这项工作开启了在受限环境中跨多个量子自由度整合机器人技术的前景,从而提高量子技术应用中的原型制作速度、控制能力和稳健性。