Suppr超能文献

基于双网络 L-CMF 方法的药物-疾病相互作用的计算预测。

The computational prediction of drug-disease interactions using the dual-network L-CMF method.

机构信息

School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826, China.

Library of Qufu Normal University, Qufu Normal University, Rizhao, China.

出版信息

BMC Bioinformatics. 2019 Jan 5;20(1):5. doi: 10.1186/s12859-018-2575-6.

Abstract

BACKGROUND

Predicting drug-disease interactions (DDIs) is time-consuming and expensive. Improving the accuracy of prediction results is necessary, and it is crucial to develop a novel computing technology to predict new DDIs. The existing methods mostly use the construction of heterogeneous networks to predict new DDIs. However, the number of known interacting drug-disease pairs is small, so there will be many errors in this heterogeneous network that will interfere with the final results.

RESULTS

A novel method, known as the dual-network L-collaborative matrix factorization, is proposed to predict novel DDIs. The Gaussian interaction profile kernels and L-norm are introduced in our method to achieve better results than other advanced methods. The network similarities of drugs and diseases with their chemical and semantic similarities are combined in this method.

CONCLUSIONS

Cross validation is used to evaluate our method, and simulation experiments are used to predict new interactions using two different datasets. Finally, our prediction accuracy is better than other existing methods. This proves that our method is feasible and effective.

摘要

背景

预测药物-疾病相互作用(DDI)既耗时又昂贵。提高预测结果的准确性是必要的,开发一种新的计算技术来预测新的 DDI 至关重要。现有的方法大多使用构建异质网络来预测新的 DDI。然而,已知的相互作用的药物-疾病对的数量很少,因此这个异质网络中会有很多错误,这会干扰最终的结果。

结果

提出了一种新的方法,称为双网络 L-协同矩阵分解,用于预测新的 DDI。在我们的方法中引入了高斯相互作用轮廓核和 L-范数,以获得比其他先进方法更好的结果。该方法结合了药物和疾病的网络相似性与其化学和语义相似性。

结论

使用交叉验证来评估我们的方法,并使用两个不同的数据集进行模拟实验来预测新的相互作用。最后,我们的预测准确性优于其他现有方法。这证明了我们的方法是可行和有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c2/6320570/cff88c60ec88/12859_2018_2575_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验