Suppr超能文献

通过半非负矩阵分解预测和理解药物-药物综合相互作用。

Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization.

作者信息

Yu Hui, Mao Kui-Tao, Shi Jian-Yu, Huang Hua, Chen Zhi, Dong Kai, Yiu Siu-Ming

机构信息

School of Computer Science, Northwestern Polytechnical University, Xi'an, China.

School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.

出版信息

BMC Syst Biol. 2018 Apr 11;12(Suppl 1):14. doi: 10.1186/s12918-018-0532-7.

Abstract

BACKGROUND

Drug-drug interactions (DDIs) always cause unexpected and even adverse drug reactions. It is important to identify DDIs before drugs are used in the market. However, preclinical identification of DDIs requires much money and time. Computational approaches have exhibited their abilities to predict potential DDIs on a large scale by utilizing pre-market drug properties (e.g. chemical structure). Nevertheless, none of them can predict two comprehensive types of DDIs, including enhancive and degressive DDIs, which increases and decreases the behaviors of the interacting drugs respectively. There is a lack of systematic analysis on the structural relationship among known DDIs. Revealing such a relationship is very important, because it is able to help understand how DDIs occur. Both the prediction of comprehensive DDIs and the discovery of structural relationship among them play an important guidance when making a co-prescription.

RESULTS

In this work, treating a set of comprehensive DDIs as a signed network, we design a novel model (DDINMF) for the prediction of enhancive and degressive DDIs based on semi-nonnegative matrix factorization. Inspiringly, DDINMF achieves the conventional DDI prediction (AUROC = 0.872 and AUPR = 0.605) and the comprehensive DDI prediction (AUROC = 0.796 and AUPR = 0.579). Compared with two state-of-the-art approaches, DDINMF shows it superiority. Finally, representing DDIs as a binary network and a signed network respectively, an analysis based on NMF reveals crucial knowledge hidden among DDIs.

CONCLUSIONS

Our approach is able to predict not only conventional binary DDIs but also comprehensive DDIs. More importantly, it reveals several key points about the DDI network: (1) both binary and signed networks show fairly clear clusters, in which both drug degree and the difference between positive degree and negative degree show significant distribution; (2) the drugs having large degrees tend to have a larger difference between positive degree and negative degree; (3) though the binary DDI network contains no information about enhancive and degressive DDIs at all, it implies some of their relationship in the comprehensive DDI matrix; (4) the occurrence of signs indicating enhancive and degressive DDIs is not random because the comprehensive DDI network is equipped with a structural balance.

摘要

背景

药物相互作用(DDIs)总是会引发意外甚至不良的药物反应。在药物上市前识别DDIs很重要。然而,DDIs的临床前识别需要大量资金和时间。计算方法已展现出利用上市前药物特性(如化学结构)大规模预测潜在DDIs的能力。然而,它们都无法预测两种全面类型的DDIs,即增强型和递减型DDIs,这两种类型分别会增加和降低相互作用药物的行为。目前缺乏对已知DDIs之间结构关系的系统分析。揭示这种关系非常重要,因为它有助于理解DDIs是如何发生的。全面DDIs的预测以及它们之间结构关系的发现对联合处方具有重要指导意义。

结果

在这项工作中,将一组全面的DDIs视为一个带符号网络,我们基于半非负矩阵分解设计了一种用于预测增强型和递减型DDIs的新型模型(DDINMF)。令人鼓舞的是,DDINMF实现了传统DDI预测(AUROC = 0.872,AUPR = 0.605)和全面DDI预测(AUROC = 0.796,AUPR = 0.579)。与两种最先进的方法相比,DDINMF显示出其优越性。最后,分别将DDIs表示为二元网络和带符号网络,基于非负矩阵分解的分析揭示了隐藏在DDIs中的关键知识。

结论

我们的方法不仅能够预测传统的二元DDIs,还能预测全面的DDIs。更重要的是,它揭示了关于DDI网络的几个关键点:(1)二元网络和带符号网络都显示出相当清晰的聚类,其中药物度数以及正度数与负度数之间的差异都呈现出显著的分布;(2)度数较大的药物往往正度数与负度数之间的差异也较大;(3)尽管二元DDI网络根本不包含关于增强型和递减型DDIs的信息,但它在全面DDI矩阵中暗示了它们之间的一些关系;(4)表示增强型和递减型DDIs的符号的出现并非随机,因为全面DDI网络具有结构平衡性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bf/5907306/9e10cb9dcf61/12918_2018_532_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验