Suppr超能文献

TMFUF:一种基于三重矩阵分解的新药综合药物相互作用预测统一框架。

TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs.

机构信息

School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.

School of Software and Microelectronics, Northwestern Polytechnical University, Xi'an, China.

出版信息

BMC Bioinformatics. 2018 Nov 20;19(Suppl 14):411. doi: 10.1186/s12859-018-2379-8.

Abstract

BACKGROUND

A significant number of adverse drug reactions is caused by unexpected Drug-drug interactions (DDIs). The identification of DDIs becomes crucial before the co-prescription of multiple drugs is made. Such a task in clinics or in drug discovery usually requires high costs and numerous limitations, while computational approaches are able to predict potential DDIs effectively by utilizing diverse drug attributes (e.g. side effects). Nevertheless, they're incapable when required to predict enhancive and degressive DDIs, which change increasingly and decreasingly the pharmacological behavior of interacting drugs respectively. The pharmacological change of DDIs is one of the most important factors when making a multi-drug prescription.

RESULTS

In this work, we design a Triple Matrix Factorization-based Unified Framework (TMFUF) to address the above issue. By leveraging a group of side effect entries of drugs, TMFUF achieves the inspiring result (AUC = 0.842 and AUPR = 0.526) in the case of conventional DDI prediction under the traditional screening task. In the comparison with two state-of-the-art approaches, TMFUF demonstrates it superiority by ~ 7% and ~ 20% improvement in terms of AUC and AUPR respectively. More importantly, TMFUF shows its ability in the comprehensive DDI prediction under different screening tasks. Finally, a utilization TMFUF reveals the significant pairs of side effects, which contribute to form enhancive and degressive DDIs, for further clinical validation.

CONCLUSIONS

The proposed TMFUF is first capable to predict both conventional binary DDIs and comprehensive DDIs such that it captures the pharmacological changes caused by DDIs. Furthermore, it provides a unified solution of DDI prediction for two screening scenarios, which involves newly given drugs having no prior interaction. Another advantage is its ability to indicate how significantly the pairs of drug features contribute to form DDIs.

摘要

背景

大量的药物不良反应是由意想不到的药物-药物相互作用(DDI)引起的。在开多种药物之前,识别 DDI 变得至关重要。在临床或药物发现中,此类任务通常需要高昂的成本和众多限制,而计算方法能够通过利用各种药物属性(例如副作用)来有效地预测潜在的 DDI。然而,当需要预测增强和递减的 DDI 时,它们就无能为力了,这些 DDI 分别增加和减少相互作用药物的药理学行为。DDI 的药理学变化是制定多药物处方时最重要的因素之一。

结果

在这项工作中,我们设计了一种基于三重矩阵分解的统一框架(TMFUF)来解决上述问题。通过利用一组药物的副作用条目,TMFUF 在传统筛选任务下实现了常规 DDI 预测的令人鼓舞的结果(AUC=0.842 和 AUPR=0.526)。与两种最先进的方法相比,TMFUF 在 AUC 和 AUPR 方面分别提高了约 7%和 20%,证明了其优越性。更重要的是,TMFUF 展示了其在不同筛选任务下进行综合 DDI 预测的能力。最后,利用 TMFUF 揭示了形成增强和递减 DDI 的显著药物副作用对,为进一步的临床验证提供了依据。

结论

所提出的 TMFUF 首次能够预测常规二进制 DDI 和综合 DDI,从而捕获由 DDI 引起的药理学变化。此外,它为两种筛选情况提供了统一的 DDI 预测解决方案,涉及没有先前相互作用的新药物。另一个优势是它能够指示药物特征对形成 DDI 的贡献程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9116/6245591/3ec5639edc4e/12859_2018_2379_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验