文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

辐射响应发光纳米诊疗剂用于降低 ROS/NO 介导的肿瘤微环境调控下的乏氧放射抵抗性。

Radiation-responsive scintillating nanotheranostics for reduced hypoxic radioresistance under ROS/NO-mediated tumor microenvironment regulation.

机构信息

Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China.

School of Life Sciences, Health Science Platform, Tianjin University, Tianjin Engineering Research Center for Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin, 300072, P. R. China.

出版信息

Theranostics. 2018 Nov 12;8(21):5870-5889. doi: 10.7150/thno.27351. eCollection 2018.


DOI:10.7150/thno.27351
PMID:30613268
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6299445/
Abstract

UNLABELLED: Hypoxia-induced radioresistance is the primary reason for failure of tumor radiotherapy (RT). Changes within the irradiated tumor microenvironment (TME) including oxygen, reactive oxygen species (ROS) and nitric oxide (NO) are closely related to radioresistance. Therefore, there is an urgent need to develop new approaches for overcoming hypoxic radioresistance by incorporating TME regulation into current radiotherapeutic strategies. METHODS: Herein, we explored a radiation-responsive nanotheranostic system to enhance RT effects on hypoxic tumors by multi-way therapeutic effects. This system was developed by loading S-nitrosothiol groups (SNO, a NO donor) and indocyanine green (ICG, a photosensitizer) onto mesoporous silica shells of Eu-doped NaGdF scintillating nanocrystals (NSC). RESULTS: Under X-ray radiation, this system can increase the local dosage by high-Z elements, promote ROS generation by X-ray-induced photodynamic therapy, and produce high levels of NO to enhance tumor-killing effects and improve hypoxia NO-induced vasodilation. and studies revealed that this combined strategy can greatly reinforce DNA damage and apoptosis of hypoxic tumor cells, while significantly suppressing tumor growth, improving tumor hypoxia and promoting p53 up-regulation and HIF1α down-regulation. In addition, this system showed pronounced tumor contrast performance in T-weighted magnetic resonance imaging and computed tomography. CONCLUSION: This work demonstrates the great potential of scintillating nanotheranostics for multimodal imaging-guided X-ray radiation-triggered tumor combined therapy to overcome radioresistance.

摘要

未加标签:缺氧诱导的放射抵抗是肿瘤放射治疗(RT)失败的主要原因。辐照肿瘤微环境(TME)内的变化,包括氧、活性氧(ROS)和一氧化氮(NO),与放射抵抗密切相关。因此,迫切需要将 TME 调节纳入当前放射治疗策略,开发新的方法来克服缺氧放射抵抗。

方法:本文通过多种治疗作用,探索了一种辐射响应性的纳米治疗系统,以增强 RT 对缺氧肿瘤的疗效。该系统是通过将 S-亚硝基硫醇(SNO,NO 供体)和吲哚菁绿(ICG,光敏剂)负载到 Eu 掺杂的 NaGdF 闪烁纳米晶(NSC)的介孔硅壳上来开发的。

结果:在 X 射线辐射下,该系统可以通过高 Z 元素增加局部剂量,通过 X 射线诱导的光动力疗法促进 ROS 的产生,并产生高水平的 NO,以增强肿瘤杀伤作用,并改善缺氧诱导的血管扩张。体内和体外研究表明,这种联合策略可以极大地增强缺氧肿瘤细胞的 DNA 损伤和细胞凋亡,同时显著抑制肿瘤生长、改善肿瘤缺氧并促进 p53 上调和 HIF1α 下调。此外,该系统在 T 加权磁共振成像和计算机断层扫描中表现出明显的肿瘤对比性能。

结论:这项工作证明了闪烁纳米治疗在多模态成像引导 X 射线辐射触发肿瘤联合治疗中的巨大潜力,以克服放射抵抗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/79d22416dd79/thnov08p5870g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/38bfde0fa1a4/thnov08p5870g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/32b5bd8cb57a/thnov08p5870g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/607c67fe75c5/thnov08p5870g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/903337ca9a9d/thnov08p5870g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/7c10fdeba3a0/thnov08p5870g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/f1daf2e5e961/thnov08p5870g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/79d22416dd79/thnov08p5870g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/38bfde0fa1a4/thnov08p5870g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/32b5bd8cb57a/thnov08p5870g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/607c67fe75c5/thnov08p5870g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/903337ca9a9d/thnov08p5870g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/7c10fdeba3a0/thnov08p5870g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/f1daf2e5e961/thnov08p5870g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/6299445/79d22416dd79/thnov08p5870g007.jpg

相似文献

[1]
Radiation-responsive scintillating nanotheranostics for reduced hypoxic radioresistance under ROS/NO-mediated tumor microenvironment regulation.

Theranostics. 2018-11-12

[2]
Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics.

Theranostics. 2020

[3]
Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy.

Drug Deliv. 2018-11

[4]
X-ray Radiation-Controlled NO-Release for On-Demand Depth-Independent Hypoxic Radiosensitization.

Angew Chem Int Ed Engl. 2015-7-23

[5]
Hypoxia-specific therapeutic agents delivery nanotheranostics: A sequential strategy for ultrasound mediated on-demand tritherapies and imaging of cancer.

J Control Release. 2018-2-21

[6]
All-in-One Theranostic Nanoplatform Based on Hollow MoS for Photothermally-maneuvered Oxygen Self-enriched Photodynamic Therapy.

Theranostics. 2018-1-1

[7]
Alleviating the hypoxic tumor microenvironment with MnO-coated CeO nanoplatform for magnetic resonance imaging guided radiotherapy.

J Nanobiotechnology. 2023-3-15

[8]
Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.

Acta Biomater. 2021-11

[9]
hypoxia modulating nano-catalase for amplifying DNA damage in radiation resistive colon tumors.

Biomater Sci. 2023-9-12

[10]
Virus-Inspired Hollow Mesoporous Gadolinium-Bismuth Nanotheranostics for Magnetic Resonance Imaging-Guided Synergistic Photodynamic-Radiotherapy.

Adv Healthc Mater. 2022-3

引用本文的文献

[1]
Drug repurposing: isosorbide mononitrate enhances tumor accumulation to augment sonodynamic therapy for hepatocellular carcinoma.

J Nanobiotechnology. 2025-8-25

[2]
Nanoscintillator Coating: A Key Parameter That Strongly Impacts Internalization, Biocompatibility, and Therapeutic Efficacy in Pancreatic Cancer Models.

Small Sci. 2024-3-28

[3]
X-ray excited luminescent nanoparticles for deep photodynamic therapy.

RSC Adv. 2023-10-16

[4]
Radiosensitizing effects of pyrogallol-loaded mesoporous or-ganosilica nanoparticles on gastric cancer by amplified ferroptosis.

Front Bioeng Biotechnol. 2023-4-18

[5]
Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: pivotal role of autophagy.

Theranostics. 2023

[6]
Progress and perspectives of platinum nanozyme in cancer therapy.

Front Chem. 2022-12-2

[7]
Catalytic radiosensitization: Insights from materials physicochemistry.

Mater Today (Kidlington). 2022

[8]
Tantalum-carbon-integrated nanozymes as a nano-radiosensitizer for radiotherapy enhancement.

Front Bioeng Biotechnol. 2022-10-24

[9]
Synergetic delivery of artesunate and isosorbide 5-mononitrate with reduction-sensitive polymer nanoparticles for ovarian cancer chemotherapy.

J Nanobiotechnology. 2022-11-5

[10]
5-Aminolevulinic acid overcomes hypoxia-induced radiation resistance by enhancing mitochondrial reactive oxygen species production in prostate cancer cells.

Br J Cancer. 2022-7

本文引用的文献

[1]
Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles.

Adv Mater. 2017-1-13

[2]
X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy.

Theranostics. 2016-10-1

[3]
Mechanism of hard-nanomaterial clearance by the liver.

Nat Mater. 2016-8-15

[4]
Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs.

Biomaterials. 2016-5-24

[5]
Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment.

Biomaterials. 2016-4-26

[6]
Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy.

ACS Nano. 2016-4-26

[7]
Nanoparticles in radiation oncology: From bench-side to bedside.

Cancer Lett. 2016-3-14

[8]
Size-Tuning Ionization To Optimize Gold Nanoparticles for Simultaneous Enhanced CT Imaging and Radiotherapy.

ACS Nano. 2016-2-23

[9]
Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment.

Small. 2015-9-23

[10]
Hypoxia and Predicting Radiation Response.

Semin Radiat Oncol. 2015-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索