Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China.
School of Life Sciences, Health Science Platform, Tianjin University, Tianjin Engineering Research Center for Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin, 300072, P. R. China.
Theranostics. 2018 Nov 12;8(21):5870-5889. doi: 10.7150/thno.27351. eCollection 2018.
UNLABELLED: Hypoxia-induced radioresistance is the primary reason for failure of tumor radiotherapy (RT). Changes within the irradiated tumor microenvironment (TME) including oxygen, reactive oxygen species (ROS) and nitric oxide (NO) are closely related to radioresistance. Therefore, there is an urgent need to develop new approaches for overcoming hypoxic radioresistance by incorporating TME regulation into current radiotherapeutic strategies. METHODS: Herein, we explored a radiation-responsive nanotheranostic system to enhance RT effects on hypoxic tumors by multi-way therapeutic effects. This system was developed by loading S-nitrosothiol groups (SNO, a NO donor) and indocyanine green (ICG, a photosensitizer) onto mesoporous silica shells of Eu-doped NaGdF scintillating nanocrystals (NSC). RESULTS: Under X-ray radiation, this system can increase the local dosage by high-Z elements, promote ROS generation by X-ray-induced photodynamic therapy, and produce high levels of NO to enhance tumor-killing effects and improve hypoxia NO-induced vasodilation. and studies revealed that this combined strategy can greatly reinforce DNA damage and apoptosis of hypoxic tumor cells, while significantly suppressing tumor growth, improving tumor hypoxia and promoting p53 up-regulation and HIF1α down-regulation. In addition, this system showed pronounced tumor contrast performance in T-weighted magnetic resonance imaging and computed tomography. CONCLUSION: This work demonstrates the great potential of scintillating nanotheranostics for multimodal imaging-guided X-ray radiation-triggered tumor combined therapy to overcome radioresistance.
未加标签:缺氧诱导的放射抵抗是肿瘤放射治疗(RT)失败的主要原因。辐照肿瘤微环境(TME)内的变化,包括氧、活性氧(ROS)和一氧化氮(NO),与放射抵抗密切相关。因此,迫切需要将 TME 调节纳入当前放射治疗策略,开发新的方法来克服缺氧放射抵抗。
方法:本文通过多种治疗作用,探索了一种辐射响应性的纳米治疗系统,以增强 RT 对缺氧肿瘤的疗效。该系统是通过将 S-亚硝基硫醇(SNO,NO 供体)和吲哚菁绿(ICG,光敏剂)负载到 Eu 掺杂的 NaGdF 闪烁纳米晶(NSC)的介孔硅壳上来开发的。
结果:在 X 射线辐射下,该系统可以通过高 Z 元素增加局部剂量,通过 X 射线诱导的光动力疗法促进 ROS 的产生,并产生高水平的 NO,以增强肿瘤杀伤作用,并改善缺氧诱导的血管扩张。体内和体外研究表明,这种联合策略可以极大地增强缺氧肿瘤细胞的 DNA 损伤和细胞凋亡,同时显著抑制肿瘤生长、改善肿瘤缺氧并促进 p53 上调和 HIF1α 下调。此外,该系统在 T 加权磁共振成像和计算机断层扫描中表现出明显的肿瘤对比性能。
结论:这项工作证明了闪烁纳米治疗在多模态成像引导 X 射线辐射触发肿瘤联合治疗中的巨大潜力,以克服放射抵抗。
Angew Chem Int Ed Engl. 2015-7-23
RSC Adv. 2023-10-16
Front Bioeng Biotechnol. 2023-4-18
Front Chem. 2022-12-2
Mater Today (Kidlington). 2022
Front Bioeng Biotechnol. 2022-10-24
Theranostics. 2016-10-1
Nat Mater. 2016-8-15
Cancer Lett. 2016-3-14
Semin Radiat Oncol. 2015-10