Malekian Bita, Schoch Rafael L, Robson Timothy, Ferrand-Drake Del Castillo Gustav, Xiong Kunli, Emilsson Gustav, Kapinos Larisa E, Lim Roderick Y H, Dahlin Andreas
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland.
Front Chem. 2018 Dec 21;6:637. doi: 10.3389/fchem.2018.00637. eCollection 2018.
Biosensors based on plasmonic nanostructures offer label-free and real-time monitoring of biomolecular interactions. However, so do many other surface sensitive techniques with equal or better resolution in terms of surface coverage. Yet, plasmonic nanostructures offer unique possibilities to study effects associated with nanoscale geometry. In this work we use plasmonic nanopores with double gold films and detect binding of proteins inside them. By thiol and trietoxysilane chemistry, receptors are selectively positioned on the silicon nitride interior walls. Larger (150 nm) nanopores are used detect binding of averaged sized proteins (60 kg/mol) with high signal to noise (>100). Further, we fabricate pores that approach the size of the nuclear pore complex (diameter down to 50 nm) and graft disordered phenylalanine-glycine nucleoporin domains to the walls, followed by titration of karyopherinβ1 transport receptors. The interactions are shown to occur with similar affinity as determined by conventional surface plasmon resonance on planar surfaces. Our work illustrates another unique application of plasmonic nanostructures, namely the possibility to mimic the geometry of a biological nanomachine with integrated optical sensing capabilities.
基于等离子体纳米结构的生物传感器可实现对生物分子相互作用的无标记实时监测。然而,许多其他表面敏感技术在表面覆盖率方面也具有相同或更好的分辨率,同样能做到这一点。不过,等离子体纳米结构为研究与纳米级几何形状相关的效应提供了独特的可能性。在这项工作中,我们使用带有双层金膜的等离子体纳米孔,并检测其中蛋白质的结合情况。通过硫醇和三乙氧基硅烷化学方法,受体被选择性地定位在氮化硅内壁上。使用较大的(约150纳米)纳米孔来检测平均大小的蛋白质(约60千道尔顿/摩尔)的结合,信噪比高(>100)。此外,我们制造出接近核孔复合体尺寸(直径低至50纳米)的孔,并将无序的苯丙氨酸 - 甘氨酸核孔蛋白结构域接枝到孔壁上,随后滴定核转运蛋白β1转运受体。结果表明,这些相互作用的亲和力与在平面表面上通过传统表面等离子体共振测定的相似。我们的工作展示了等离子体纳米结构的另一个独特应用,即具有集成光学传感能力的模拟生物纳米机器几何形状的可能性。