Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands.
Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China.
ACS Nano. 2019 Jan 22;13(1):61-70. doi: 10.1021/acsnano.8b06758. Epub 2018 Dec 10.
Solid-state nanopores are single-molecule sensors that hold great potential for rapid protein and nucleic-acid analysis. Despite their many opportunities, the conventional ionic current detection scheme that is at the heart of the sensor suffers inherent limitations. This scheme intrinsically couples signal strength to the driving voltage, requires the use of high-concentration electrolytes, suffers from capacitive noise, and impairs high-density sensor integration. Here, we propose a fundamentally different detection scheme based on the enhanced light transmission through a plasmonic nanopore. We demonstrate that translocations of single DNA molecules can be optically detected, without the need of any labeling, in the transmitted light intensity through an inverted-bowtie plasmonic nanopore. Characterization and the cross-correlation of the optical signals with their electrical counterparts verify the plasmonic basis of the optical signal. We demonstrate DNA translocation event detection in a regime of driving voltages and buffer conditions where traditional ionic current sensing fails. This label-free optical detection scheme offers opportunities to probe native DNA-protein interactions at physiological conditions.
固态纳米孔是单分子传感器,在快速蛋白质和核酸分析方面具有巨大的潜力。尽管有许多机会,但传感器核心的传统离子电流检测方案存在固有局限性。该方案本质上将信号强度与驱动电压耦合,需要使用高浓度电解质,受到电容噪声的影响,并损害高密度传感器集成。在这里,我们提出了一种基于等离子体纳米孔增强光传输的根本不同的检测方案。我们证明,通过倒置蝴蝶结等离子体纳米孔的透射光强度,可以在无需任何标记的情况下,对单个 DNA 分子的转位进行光学检测。光学信号的特征和与电信号的互相关验证了光学信号的等离子体基础。我们在传统离子电流传感失效的驱动电压和缓冲条件下,证明了 DNA 转位事件的检测。这种无标记的光学检测方案为在生理条件下探测天然 DNA-蛋白质相互作用提供了机会。