Suppr超能文献

生物膜形成中淀粉样蛋白组装的物理决定因素。

Physical Determinants of Amyloid Assembly in Biofilm Formation.

机构信息

Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.

Department of Life Sciences, Imperial College London, London, United Kingdom.

出版信息

mBio. 2019 Jan 8;10(1):e02279-18. doi: 10.1128/mBio.02279-18.

Abstract

A wide range of bacterial pathogens have been shown to form biofilms, which significantly increase their resistance to environmental stresses, such as antibiotics, and are thus of central importance in the context of bacterial diseases. One of the major structural components of these bacterial biofilms are amyloid fibrils, yet the mechanism of fibril assembly and its importance for biofilm formation are currently not fully understood. By studying fibril formation , in a model system of two common but unrelated biofilm-forming proteins, FapC from and CsgA from , we found that the two proteins have a common aggregation mechanism. In both systems, fibril formation proceeds via nucleated growth of linear fibrils exhibiting similar measured rates of elongation, with negligible fibril self-replication. These similarities between two unrelated systems suggest that convergent evolution plays a key role in tuning the assembly kinetics of functional amyloid fibrils and indicates that only a narrow window of mechanisms and assembly rates allows for successful biofilm formation. Thus, the amyloid assembly reaction is likely to represent a means for controlling biofilm formation, both by the organism and by possible inhibitory drugs. Biofilms are generated by bacteria, embedded in the formed extracellular matrix. The biofilm's function is to improve the survival of a bacterial colony through, for example, increased resistance to antibiotics or other environmental stresses. Proteins secreted by the bacteria act as a major structural component of this extracellular matrix, as they self-assemble into highly stable amyloid fibrils, making the biofilm very difficult to degrade by physical and chemical means once formed. By studying the self-assembly mechanism of the fibrils from their monomeric precursors in two unrelated bacteria, our experimental and theoretical approaches shed light on the mechanism of functional amyloid assembly in the context of biofilm formation. Our results suggest that fibril formation may be a rate-limiting step in biofilm formation, which in turn has implications on the protein self-assembly reaction as a target for potential antibiotic drugs.

摘要

已证实,多种细菌病原体能够形成生物膜,这显著增强了它们对环境压力(如抗生素)的抵抗力,因此在细菌疾病中具有核心重要性。这些细菌生物膜的主要结构成分之一是淀粉样纤维,然而,纤维组装的机制及其对生物膜形成的重要性目前尚未完全理解。通过研究在两种常见但不相关的生物膜形成蛋白(FapC 来自 和 CsgA 来自 )的模型体系中的纤维形成,我们发现这两种蛋白质具有共同的聚集机制。在这两个系统中,纤维形成都是通过线性纤维的核生长进行的,这些纤维表现出相似的伸长率,纤维自我复制的情况可以忽略不计。这两个不相关系统之间的相似性表明,趋同进化在调节功能淀粉样纤维的组装动力学方面起着关键作用,并表明只有一个狭窄的机制和组装速率窗口才能允许成功形成生物膜。因此,淀粉样纤维组装反应很可能代表了一种控制生物膜形成的手段,无论是由生物体还是可能的抑制性药物来控制。生物膜是由细菌生成的,嵌入在形成的细胞外基质中。生物膜的功能是通过提高细菌群落的存活率来实现的,例如,增加对抗生素或其他环境压力的抵抗力。细菌分泌的蛋白质作为该细胞外基质的主要结构成分,因为它们自组装成高度稳定的淀粉样纤维,使得生物膜一旦形成就很难通过物理和化学手段降解。通过研究两种不相关细菌中纤维从其单体前体的自组装机制,我们的实验和理论方法揭示了生物膜形成背景下功能淀粉样纤维组装的机制。我们的结果表明,纤维形成可能是生物膜形成的限速步骤,这反过来又对作为潜在抗生素药物靶标的蛋白质自组装反应产生了影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a15/6325246/0a33c264b9c7/mBio.02279-18-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验