Suppr超能文献

利用诱导多能干细胞衍生的人心肌细胞建立肌原性心肌病模型。

Modelling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.

出版信息

J Physiol. 2020 Jul;598(14):2909-2922. doi: 10.1113/JP276753. Epub 2019 Feb 6.

Abstract

Cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) provide a unique opportunity to understand the pathophysiological effects of genetic cardiomyopathy mutations. In particular, these cells hold the potential to unmask the effects of mutations on contractile behaviour in vitro, providing new insights into genotype-phenotype relationships. With this goal in mind, several groups have established iPSC lines that contain sarcomeric gene mutations linked to cardiomyopathy in patient populations. Their studies have employed diverse systems and methods for performing mechanical measurements of contractility, ranging from single cell techniques to multicellular tissue-like constructs. Here, we review published results to date within the growing field of iPSC-based sarcomeric cardiomyopathy disease models. We devote special attention to the methods of mechanical characterization selected in each case, and how these relate to the paradigms of classical muscle mechanics. An appreciation of these somewhat subtle paradigms can inform efforts to compare the results of different studies and possibly reconcile discrepancies. Although more work remains to be done to improve and possibly standardize methods for producing, maturing, and mechanically interrogating iPSC-derived cardiomyocytes, the initial results indicate that this approach to modelling cardiomyopathies will continue to provide critical insights into these devastating diseases.

摘要

人心肌细胞来源于人类诱导多能干细胞(iPSCs),为理解遗传型心肌病突变的病理生理学效应提供了独特的机会。特别是,这些细胞有可能揭示突变对体外收缩行为的影响,从而深入了解基因型-表型关系。为此,有几个研究小组建立了包含与患者群体中心肌病相关的肌节基因突变的 iPSC 系。他们的研究采用了多种系统和方法来进行收缩性的力学测量,从单细胞技术到类似多细胞组织的构建体。在此,我们回顾了目前在基于 iPSC 的肌节性心肌病疾病模型这一日益增长的领域中发表的研究结果。我们特别关注每个案例中选择的力学特征化方法,以及这些方法如何与经典肌肉力学的范例相关。对这些有些微妙范例的理解可以为比较不同研究结果并可能协调差异提供信息。尽管为了改进和可能标准化生成、成熟和机械研究 iPSC 衍生的心肌细胞的方法还需要做更多的工作,但初步结果表明,这种建模心肌病的方法将继续为这些破坏性疾病提供关键的见解。

相似文献

引用本文的文献

2
A transcriptional enhancer regulates cardiac maturation.转录增强子调控心脏成熟。
Nat Cardiovasc Res. 2024 Jun;3(6):666-684. doi: 10.1038/s44161-024-00484-2. Epub 2024 May 30.
4
7
Transcriptome studies of inherited dilated cardiomyopathies.遗传性扩张型心肌病的转录组研究。
Mamm Genome. 2023 Jun;34(2):312-322. doi: 10.1007/s00335-023-09978-z. Epub 2023 Feb 7.
9
Prospects for remodeling the hypertrophic heart with myosin modulators.使用肌球蛋白调节剂重塑肥厚型心脏的前景。
Front Cardiovasc Med. 2022 Oct 18;9:1051564. doi: 10.3389/fcvm.2022.1051564. eCollection 2022.

本文引用的文献

1
A tissue-engineered scale model of the heart ventricle.心脏心室的组织工程学比例模型。
Nat Biomed Eng. 2018 Dec;2(12):930-941. doi: 10.1038/s41551-018-0271-5. Epub 2018 Jul 23.
2
A Contraction Stress Model of Hypertrophic Cardiomyopathy due to Sarcomere Mutations.肌节突变致肥厚型心肌病的收缩应激模型。
Stem Cell Reports. 2019 Jan 8;12(1):71-83. doi: 10.1016/j.stemcr.2018.11.015. Epub 2018 Dec 13.
5
Telomere shortening is a hallmark of genetic cardiomyopathies.端粒缩短是遗传性心肌病的一个特征。
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9276-9281. doi: 10.1073/pnas.1714538115. Epub 2018 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验