Siqueira Priscila, Siqueira Éder, de Lima Ana Elza, Siqueira Gilberto, Pinzón-Garcia Ana Delia, Lopes Ana Paula, Segura Maria Esperanza Cortés, Isaac Augusta, Pereira Fabiano Vargas, Botaro Vagner Roberto
REDEMAT, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil.
Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
Nanomaterials (Basel). 2019 Jan 8;9(1):78. doi: 10.3390/nano9010078.
Hydrogels have been studied as promising materials in different biomedical applications such as cell culture in tissue engineering or in wound healing. In this work, we synthesized different nanocellulose-alginate hydrogels containing cellulose nanocrystals, TEMPO-oxidized cellulose nanocrystals (CNCTs), cellulose nanofibers or TEMPO-oxidized cellulose nanofibers (CNFTs). The hydrogels were freeze-dried and named as gels. The nanocelluloses and the gels were characterized by different techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA), while the biological features were characterized by cytotoxicity and cell growth assays. The addition of CNCTs or CNFTs in alginate gels contributed to the formation of porous structure (diameter of pores in the range between 40 and 150 μm). TEMPO-oxidized cellulose nanofibers have proven to play a crucial role in improving the dimensional stability of the samples when compared to the pure alginate gels, mainly after a thermal post-treatment of these gels containing 50 wt % of CNFT, which significantly increased the Ca crosslinking density in the gel structure. The morphological characteristics, the mechanical properties, and the non-cytotoxic behavior of the CNFT-alginate gels improved bioadhesion, growth, and proliferation of the cells onto the gels. Thus, the alginate-nanocellulose gels might find applications in tissue engineering field, as for instance, in tissue repair or wound healing applications.
水凝胶作为一种有前景的材料,已被用于不同的生物医学应用中,如组织工程中的细胞培养或伤口愈合。在本研究中,我们合成了不同的纳米纤维素-海藻酸盐水凝胶,其中包含纤维素纳米晶体、TEMPO氧化纤维素纳米晶体(CNCTs)、纤维素纳米纤维或TEMPO氧化纤维素纳米纤维(CNFTs)。这些水凝胶经过冷冻干燥后被命名为凝胶。通过傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)和动态机械热分析(DMTA)等不同技术对纳米纤维素和凝胶进行了表征,同时通过细胞毒性和细胞生长试验对其生物学特性进行了表征。在海藻酸盐凝胶中添加CNCTs或CNFTs有助于形成多孔结构(孔径在40至150μm之间)。与纯海藻酸盐凝胶相比,TEMPO氧化纤维素纳米纤维已被证明在提高样品的尺寸稳定性方面起着关键作用,主要是在对含有50 wt% CNFT的这些凝胶进行热后处理之后,这显著提高了凝胶结构中的钙交联密度。CNFT-海藻酸盐凝胶的形态特征、机械性能和无细胞毒性行为改善了细胞在凝胶上的生物粘附、生长和增殖。因此,海藻酸盐-纳米纤维素凝胶可能在组织工程领域找到应用,例如在组织修复或伤口愈合应用中。