Suppr超能文献

各向异性金纳米颗粒的波长相关微分干涉对比反转

Wavelength-Dependent Differential Interference Contrast Inversion of Anisotropic Gold Nanoparticles.

作者信息

Choo Priscilla, Hryn Alexander J, Culver Kayla S, Bhowmik Debanjan, Hu Jingtian, Odom Teri W

机构信息

Department of Chemistry, Northwestern University, Evanston, IL, 60208.

Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208.

出版信息

J Phys Chem C Nanomater Interfaces. 2018 Nov 28;122(47):27024-27031. doi: 10.1021/acs.jpcc.8b08995. Epub 2018 Nov 1.

Abstract

Gold nanorods are promising nanoparticle-orientation sensors because they exhibit wavelength and angle-dependent optical patterns in their differential interference contrast (DIC) microscopy images. In this paper, we report a finite-difference time-domain method to simulate DIC images using nanorods as model probes. First, we created a DIC image library of nanorods as a function of imaging wavelength and rotation angle that showed good agreement with experimental results. Second, we used this simulation tool to explain why the patterns inverted from bright to dark when the imaging wavelength increased from below to above the plasmon resonance of the nanorod. We found that this intensity inversion resulted from reversal in electric field direction depending on wavelength relative to the nanorod plasmon resonance. Finally, we showed that this DIC contrast inversion is a general phenomenon by measuring and simulating DIC images from gold nanorods of different sizes and gold nanostars.

摘要

金纳米棒是很有前景的纳米颗粒取向传感器,因为它们在微分干涉对比(DIC)显微镜图像中呈现出与波长和角度相关的光学图案。在本文中,我们报告了一种时域有限差分方法,以使用纳米棒作为模型探针来模拟DIC图像。首先,我们创建了一个纳米棒的DIC图像库,该图像库是成像波长和旋转角度的函数,与实验结果显示出良好的一致性。其次,我们使用这个模拟工具来解释当成像波长从低于纳米棒的等离子体共振增加到高于等离子体共振时,图案为何从亮到暗反转。我们发现这种强度反转是由于相对于纳米棒等离子体共振的电场方向根据波长发生了反转。最后,通过测量和模拟不同尺寸的金纳米棒和金纳米星的DIC图像,我们表明这种DIC对比度反转是一种普遍现象。

相似文献

1
Wavelength-Dependent Differential Interference Contrast Inversion of Anisotropic Gold Nanoparticles.
J Phys Chem C Nanomater Interfaces. 2018 Nov 28;122(47):27024-27031. doi: 10.1021/acs.jpcc.8b08995. Epub 2018 Nov 1.
3
Single-Nanoparticle Orientation Sensing by Deep Learning.
ACS Cent Sci. 2020 Dec 23;6(12):2339-2346. doi: 10.1021/acscentsci.0c01252. Epub 2020 Nov 9.
4
Influence of gold nanorod geometry on optical response.
ACS Nano. 2010 Dec 28;4(12):7667-75. doi: 10.1021/nn102500s. Epub 2010 Nov 23.
8
Mesoporous silica shell-coated single gold nanorods as multifunctional orientation probes in dynamic biological environments.
RSC Adv. 2021 Dec 1;11(61):38632-38637. doi: 10.1039/d1ra06572f. eCollection 2021 Nov 29.
9
Single gold nanostars with multiple branches as multispectral orientation probes in single-particle rotational tracking.
Chem Commun (Camb). 2021 Apr 4;57(26):3263-3266. doi: 10.1039/d1cc00731a. Epub 2021 Mar 2.

引用本文的文献

1
All-optical analog differential operation and information processing empowered by meta-devices.
Nanophotonics. 2025 Jan 27;14(8):1021-1044. doi: 10.1515/nanoph-2024-0540. eCollection 2025 Apr.
3
Nanoparticle Anisotropy Increases Targeting Interactions on Live-Cell Membranes.
ACS Nano. 2024 May 14;18(19):12537-12546. doi: 10.1021/acsnano.4c02700. Epub 2024 Apr 29.
4
Ligand Separation on Nanoconstructs Affects Targeting Selectivity to Protein Dimers on Cell Membranes.
Nano Lett. 2024 Jan 10;24(1):519-524. doi: 10.1021/acs.nanolett.3c04641. Epub 2023 Dec 21.
5
Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles.
Int J Nanomedicine. 2022 May 13;17:2139-2163. doi: 10.2147/IJN.S355007. eCollection 2022.
6
Nanoparticle Shape Determines Dynamics of Targeting Nanoconstructs on Cell Membranes.
J Am Chem Soc. 2021 Mar 31;143(12):4550-4555. doi: 10.1021/jacs.1c00850. Epub 2021 Mar 18.
7
Measuring collagen fibril diameter with differential interference contrast microscopy.
J Struct Biol. 2021 Mar;213(1):107697. doi: 10.1016/j.jsb.2021.107697. Epub 2021 Feb 2.
8
Single-Nanoparticle Orientation Sensing by Deep Learning.
ACS Cent Sci. 2020 Dec 23;6(12):2339-2346. doi: 10.1021/acscentsci.0c01252. Epub 2020 Nov 9.
9
Plasmonic nanostar photocathodes for optically-controlled directional currents.
Nat Commun. 2020 Mar 13;11(1):1367. doi: 10.1038/s41467-020-15115-0.
10
Resolving Single-Nanoconstruct Dynamics during Targeting and Nontargeting Live-Cell Membrane Interactions.
ACS Nano. 2019 Dec 24;13(12):13637-13644. doi: 10.1021/acsnano.9b03144. Epub 2019 Aug 9.

本文引用的文献

1
Separation of Stabilized MOPS Gold Nanostars by Density Gradient Centrifugation.
ACS Omega. 2017 Aug 23;2(8):4878-4884. doi: 10.1021/acsomega.7b00871. eCollection 2017 Aug 31.
2
Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
ACS Nano. 2015 Oct 27;9(10):10039-46. doi: 10.1021/acsnano.5b03622. Epub 2015 Sep 10.
3
A highly specific gold nanoprobe for live-cell single-molecule imaging.
Nano Lett. 2013 Apr 10;13(4):1489-94. doi: 10.1021/nl304561g. Epub 2013 Mar 6.
4
Determining the full three-dimensional orientation of single anisotropic nanoparticles by differential interference contrast microscopy.
Angew Chem Int Ed Engl. 2012 Jul 27;51(31):7734-8. doi: 10.1002/anie.201202340. Epub 2012 Jun 26.
5
Differential interference contrast polarization anisotropy for tracking rotational dynamics of gold nanorods.
Chem Commun (Camb). 2011 Jul 21;47(27):7743-5. doi: 10.1039/c1cc11679g. Epub 2011 Jun 7.
6
Influence of gold nanorod geometry on optical response.
ACS Nano. 2010 Dec 28;4(12):7667-75. doi: 10.1021/nn102500s. Epub 2010 Nov 23.
9
Plasmonic nanorod absorbers as orientation sensors.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2781-6. doi: 10.1073/pnas.0910127107. Epub 2010 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验