Suppr超能文献

用于评估基于深度学习的配准中图像对齐的对抗相似性网络

Adversarial Similarity Network for Evaluating Image Alignment in Deep Learning based Registration.

作者信息

Fan Jingfan, Cao Xiaohuan, Xue Zhong, Yap Pew-Thian, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

School of Automation, Northwestern Polytechnical University, Xi'an, China.

出版信息

Med Image Comput Comput Assist Interv. 2018 Sep;11070:739-746. doi: 10.1007/978-3-030-00928-1_83. Epub 2018 Sep 26.

Abstract

This paper introduces an unsupervised adversarial similarity network for image registration. Unlike existing deep learning registration frameworks, our approach does not require ground-truth deformations and specific similarity metrics. We connect a registration network and a discrimination network with a deformable transformation layer. The registration network is trained with feedback from the discrimination network, which is designed to judge whether a pair of registered images are sufficiently similar. Using adversarial training, the registration network is trained to predict deformations that are accurate enough to fool the discrimination network. Experiments on four brain MRI datasets indicate that our method yields registration performance that is promising in both accuracy and efficiency compared with state-of-the-art registration methods, including those based on deep learning.

摘要

本文介绍了一种用于图像配准的无监督对抗相似性网络。与现有的深度学习配准框架不同,我们的方法不需要真实变形和特定的相似性度量。我们通过一个可变形变换层连接配准网络和判别网络。配准网络利用判别网络的反馈进行训练,判别网络旨在判断一对配准图像是否足够相似。通过对抗训练,配准网络被训练来预测足够准确的变形,以欺骗判别网络。在四个脑磁共振成像数据集上的实验表明,与包括基于深度学习的方法在内的现有最先进配准方法相比,我们的方法在准确性和效率方面都具有良好的配准性能。

相似文献

2
Adversarial learning for mono- or multi-modal registration.对抗学习的单模态或多模态配准。
Med Image Anal. 2019 Dec;58:101545. doi: 10.1016/j.media.2019.101545. Epub 2019 Aug 24.
6
[An unsupervised unimodal registration method based on Wasserstein Gan].基于瓦瑟斯坦生成对抗网络的无监督单峰配准方法
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Aug 31;41(9):1366-1373. doi: 10.12122/j.issn.1673-4254.2021.09.11.
10
Unsupervised deep learning registration model for multimodal brain images.无监督深度学习的多模态脑图像配准模型。
J Appl Clin Med Phys. 2023 Nov;24(11):e14177. doi: 10.1002/acm2.14177. Epub 2023 Oct 12.

引用本文的文献

9
Artificial Intelligence in Radiation Therapy.放射治疗中的人工智能
IEEE Trans Radiat Plasma Med Sci. 2022 Feb;6(2):158-181. doi: 10.1109/TRPMS.2021.3107454. Epub 2021 Aug 24.
10
Construction of Longitudinally Consistent 4D Infant Cerebellum Atlases Based on Deep Learning.基于深度学习构建纵向一致的4D婴儿小脑图谱
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12904:139-149. doi: 10.1007/978-3-030-87202-1_14. Epub 2021 Sep 21.

本文引用的文献

3
Quicksilver: Fast predictive image registration - A deep learning approach.快银:快速预测图像配准 - 深度学习方法。
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
5
Diffeomorphic demons: efficient non-parametric image registration.微分同胚恶魔算法:高效的非参数图像配准
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验