Suppr超能文献

N-去氧鸟嘌呤核苷修饰 DNA 的合成及其在大肠杆菌 DNA 聚合酶 IV 跨损伤合成中的研究。

Synthesis of N-Deoxyguanosine Modified DNAs and the Studies on Their Translesion Synthesis by the E. coli DNA Polymerase IV.

机构信息

Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India.

Regional Centre for Biotechnology , NCR Biotech Science Cluster , third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , India.

出版信息

J Org Chem. 2019 Feb 15;84(4):1734-1747. doi: 10.1021/acs.joc.8b02082. Epub 2019 Feb 4.

Abstract

We report the synthesis of N-aryl (benzyl, naphthyl, anthracenyl, and pyrenyl)-deoxyguanosine (dG) modified phosphoramidite building blocks and the corresponding damaged DNAs. Primer extension studies using E. coli Pol IV, a translesion polymerase, demonstrate that translesion synthesis (TLS) across these N-dG adducts is error free. However, the efficiency of TLS activity decreases with increase in the steric bulkiness of the adducts. Molecular dynamics simulations of damaged DNA-Pol IV complexes reveal the van der Waals interactions between key amino acid residues (Phe13, Ile31, Gly32, Gly33, Ser42, Pro73, Gly74, Phe76, and Tyr79) of the enzyme and adduct that help to accommodate the bulky damages in a hydrophobic pocket to facilitate TLS. Overall, the results presented here provide insights into the TLS across N-aryl-dG damaged DNAs by Pol IV.

摘要

我们报告了 N-芳基(苄基、萘基、蒽基和芘基)-脱氧鸟苷(dG)修饰的亚磷酰胺核苷合成砌块及其相应的损伤 DNA。使用 E. coli Pol IV(一种跨损伤聚合酶)进行的引物延伸研究表明,这些 N-dG 加合物的跨损伤合成(TLS)是无错误的。然而,TLS 活性的效率随着加合物的空间位阻的增加而降低。损伤 DNA-Pol IV 复合物的分子动力学模拟揭示了酶和加合物之间关键氨基酸残基(Phe13、Ile31、Gly32、Gly33、Ser42、Pro73、Gly74、Phe76 和 Tyr79)之间的范德华相互作用,这些相互作用有助于将大体积的损伤容纳在疏水性口袋中,以促进 TLS。总的来说,这里呈现的结果提供了对 Pol IV 跨 N-芳基-dG 损伤 DNA 的 TLS 的深入了解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验