Suppr超能文献

巨单层囊泡与蜻蜓翅膀表面纳米结构的相互作用。

Interaction of Giant Unilamellar Vesicles with the Surface Nanostructures on Dragonfly Wings.

机构信息

School of Science, College of Science, Engineering and Health , RMIT University , GPO Box 2476, Melbourne , Victoria 3001 , Australia.

ARC Research Hub for Australian Steel Manufacturing , Wollongong , New South Wales 2522 , Australia.

出版信息

Langmuir. 2019 Feb 12;35(6):2422-2430. doi: 10.1021/acs.langmuir.8b03470. Epub 2019 Jan 25.

Abstract

The waxy epicuticle of dragonfly wings contains a unique nanostructured pattern that exhibits bactericidal properties. In light of emerging concerns of antibiotic resistance, these mechano-bactericidal surfaces represent a particularly novel solution by which bacterial colonization and the formation of biofilms on biomedical devices can be prevented. Pathogenic bacterial biofilms on medical implant surfaces cause a significant number of human deaths every year. The proposed mechanism of bactericidal activity is through mechanical cell rupture; however, this is not yet well understood and has not been well characterized. In this study, we used giant unilamellar vesicles (GUVs) as a simplified cell membrane model to investigate the nature of their interaction with the surface of the wings of two dragonfly species, Austrothemis nigrescens and Trithemis annulata, sourced from Victoria, Australia, and the Baix Ebre and Terra Alta regions of Catalonia, Spain. Confocal laser scanning microscopy and cryo-scanning electron microscopy techniques were used to visualize the interactions between the GUVs and the wing surfaces. When exposed to both natural and gold-coated wing surfaces, the GUVs were adsorbed on the surface, exhibiting significant deformation, in the process of membrane rupture. Differences between the tensile rupture limit of GUVs composed of 1,2-dioleoyl- sn-glycero-3-phosphocholine and the isotropic tension generated from the internal osmotic pressure were used to indirectly determine the membrane tensions, generated by the nanostructures present on the wing surfaces. These were estimated as being in excess of 6.8 mN m, the first experimental estimate of such mechano-bactericidal surfaces. This simple model provides a convenient bottom-up approach toward understanding and characterizing the bactericidal properties of nanostructured surfaces.

摘要

蜻蜓翅膀的蜡质表皮含有独特的纳米结构图案,具有杀菌性能。鉴于抗生素耐药性的出现,这些机械杀菌表面代表了一种特别新颖的解决方案,可以防止生物医学设备上细菌定植和生物膜的形成。医用植入物表面上的致病性细菌生物膜每年导致大量人类死亡。杀菌活性的拟议机制是通过机械细胞破裂;然而,这还没有得到很好的理解,也没有得到很好的描述。在这项研究中,我们使用巨大的单层囊泡 (GUV) 作为简化的细胞膜模型,研究了它们与两种蜻蜓物种翅膀表面的相互作用的性质,这两种蜻蜓物种分别是来自澳大利亚维多利亚州的 Austrothemis nigrescens 和 Trithemis annulata,以及来自西班牙加泰罗尼亚的 Baix Ebre 和 Terra Alta 地区。共聚焦激光扫描显微镜和冷冻扫描电子显微镜技术用于可视化 GUV 与翅膀表面之间的相互作用。当暴露于天然和镀金的翅膀表面时,GUV 被吸附在表面上,在膜破裂的过程中表现出显著的变形。使用由 1,2-二油酰基-sn-甘油-3-磷酸胆碱组成的 GUV 的拉伸破裂极限与内部渗透压产生的各向同性张力之间的差异,间接确定了由翅膀表面上存在的纳米结构产生的膜张力。这些张力估计超过 6.8 mN m,这是对这种机械杀菌表面的第一个实验估计。这种简单的模型提供了一种方便的自下而上的方法,可以理解和表征纳米结构表面的杀菌性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验