Institut Paoli Calmettes et CRCM, 232 boulevard de Sainte Marguerite, 13009, Marseille, France.
Aix-Marseille University, Unité Mixte de Recherche S912, Institut de Recherche pour le Développement, 13385, Marseille, France.
BMC Cancer. 2019 Jan 10;19(1):45. doi: 10.1186/s12885-018-5227-3.
A strong correlation between breast cancer (BC) molecular subtypes and axillary status has been shown. It would be useful to predict the probability of lymph node (LN) positivity.
To develop the performance of multivariable models to predict LN metastases, including nomograms derived from logistic regression with clinical, pathologic variables provided by tumor surgical results or only by biopsy.
A retrospective cohort was randomly divided into two separate patient sets: a training set and a validation set. In the training set, we used multivariable logistic regression techniques to build different predictive nomograms for the risk of developing LN metastases. The discrimination ability and calibration accuracy of the resulting nomograms were evaluated on the training and validation set.
Consecutive sample of 12,572 early BC patients with sentinel node biopsies and no neoadjuvant therapy. In our predictive macro metastases LN model, the areas under curve (AUC) values were 0.780 and 0.717 respectively for pathologic and pre-operative model, with a good calibration, and results with validation data set were similar: AUC respectively of 0.796 and 0.725. Among the list of candidate's regression variables, on the training set we identified age, tumor size, LVI, and molecular subtype as statistically significant factors for predicting the risk of LN metastases.
Several nomograms were reported to predict risk of SLN involvement and NSN involvement. We propose a new calculation model to assess this risk of positive LN with similar performance which could be useful to choose management strategies, to avoid axillary LN staging or to propose ALND for patients with high level probability of major axillary LN involvement but also to propose immediate breast reconstruction when post mastectomy radiotherapy is not required for patients without LN macro metastasis.
乳腺癌(BC)分子亚型与腋窝状态之间存在很强的相关性。预测淋巴结(LN)阳性的概率将是有用的。
开发用于预测 LN 转移的多变量模型的性能,包括来自逻辑回归的列线图,该回归使用肿瘤手术结果或仅活检提供的临床和病理变量。
回顾性队列随机分为两个独立的患者组:训练集和验证集。在训练集中,我们使用多变量逻辑回归技术为 LN 转移风险构建不同的预测列线图。在训练集和验证集上评估所得列线图的区分能力和校准准确性。
连续样本为 12572 例接受前哨淋巴结活检且未接受新辅助治疗的早期 BC 患者。在我们的预测宏转移 LN 模型中,病理和术前模型的曲线下面积(AUC)值分别为 0.780 和 0.717,具有良好的校准,验证数据集的结果也相似:AUC 分别为 0.796 和 0.725。在候选回归变量列表中,在训练集中,我们确定年龄、肿瘤大小、LVI 和分子亚型是预测 LN 转移风险的统计学显著因素。
已经报道了几种列线图来预测 SLN 受累和 NSN 受累的风险。我们提出了一种新的计算模型来评估 LN 阳性的风险,其性能相似,这可能有助于选择管理策略,避免腋窝 LN 分期,或为高腋窝 LN 受累可能性的患者建议 ALND,也为不需要 LN 宏转移的患者建议立即进行乳房重建。