Suppr超能文献

脑胶质母细胞瘤肿瘤分割的可靠性:对 MRI 放射组学特征稳健性的影响。

Reliability of tumor segmentation in glioblastoma: Impact on the robustness of MRI-radiomic features.

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

出版信息

Med Phys. 2019 Aug;46(8):3582-3591. doi: 10.1002/mp.13624. Epub 2019 Jul 5.

Abstract

PURPOSE

The use of radiomic features as biomarkers of treatment response and outcome or as correlates to genomic variations requires that the computed features are robust and reproducible. Segmentation, a crucial step in radiomic analysis, is a major source of variability in the computed radiomic features. Therefore, we studied the impact of tumor segmentation variability on the robustness of MRI radiomic features.

METHOD

Fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced T1-weighted (T1WI ) MRI of 90 patients diagnosed with glioblastoma were segmented using a semiautomatic algorithm and an interactive segmentation with two different raters. We analyzed the robustness of 108 radiomic features from five categories (intensity histogram, gray-level co-occurrence matrix, gray-level size-zone matrix (GLSZM), edge maps, and shape) using intra-class correlation coefficient (ICC) and Bland and Altman analysis.

RESULTS

Our results show that both segmentation methods are reliable with ICC ≥ 0.96 and standard deviation (SD) of mean differences between the two raters (SD ) ≤ 30%. Features computed from the histogram and co-occurrence matrices were found to be the most robust (ICC ≥ 0.8 and SD  ≤ 30% for most features in these groups). Features from GLSZM were shown to have mixed robustness. Edge, shape, and GLSZM features were the most impacted by the choice of segmentation method with the interactive method resulting in more robust features than the semiautomatic method. Finally, features computed from T1WI and FLAIR images were found to have similar robustness when computed with the interactive segmentation method.

CONCLUSION

Semiautomatic and interactive segmentation methods using two raters are both reliable. The interactive method produced more robust features than the semiautomatic method. We also found that the robustness of radiomic features varied by categories. Therefore, this study could help motivate segmentation methods and feature selection in MRI radiomic studies.

摘要

目的

将放射组学特征用作治疗反应和结果的生物标志物,或用作与基因组变异的相关性,这就要求计算出的特征具有稳健性和可重复性。在放射组学分析中,分割是一个关键步骤,也是计算出的放射组学特征中变异性的主要来源。因此,我们研究了肿瘤分割变异性对 MRI 放射组学特征稳健性的影响。

方法

对 90 名经诊断患有胶质母细胞瘤的患者的液体衰减反转恢复(FLAIR)和对比增强 T1 加权(T1WI)MRI 进行分割,使用半自动算法和两位不同的读者的交互式分割。我们使用组内相关系数(ICC)和 Bland 和 Altman 分析来分析来自五个类别(强度直方图、灰度共生矩阵、灰度大小区域矩阵(GLSZM)、边缘图和形状)的 108 个放射组学特征的稳健性。

结果

我们的结果表明,这两种分割方法都具有很高的可靠性(ICC≥0.96,两位读者之间的平均差异标准差(SD)≤30%)。从直方图和共生矩阵计算得出的特征被发现是最稳健的(在这些组中,大多数特征的 ICC≥0.8,SD≤30%)。GLSZM 特征的稳健性则存在混合情况。边缘、形状和 GLSZM 特征受分割方法选择的影响最大,交互式方法产生的特征比半自动方法更稳健。最后,使用交互式分割方法计算时,发现 T1WI 和 FLAIR 图像的特征具有相似的稳健性。

结论

使用两位读者的半自动和交互式分割方法都是可靠的。与半自动方法相比,交互式方法产生的特征更稳健。我们还发现,放射组学特征的稳健性因类别而异。因此,本研究有助于激发 MRI 放射组学研究中的分割方法和特征选择。

相似文献

1
Reliability of tumor segmentation in glioblastoma: Impact on the robustness of MRI-radiomic features.
Med Phys. 2019 Aug;46(8):3582-3591. doi: 10.1002/mp.13624. Epub 2019 Jul 5.
3
Physics-Informed Discretization for Reproducible and Robust Radiomic Feature Extraction Using Quantitative MRI.
Invest Radiol. 2024 May 1;59(5):359-371. doi: 10.1097/RLI.0000000000001026. Epub 2023 Oct 9.
4
Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software.
Korean J Radiol. 2017 May-Jun;18(3):498-509. doi: 10.3348/kjr.2017.18.3.498. Epub 2017 Apr 3.
6
Influence of Image Processing on Radiomic Features From Magnetic Resonance Imaging.
Invest Radiol. 2023 Mar 1;58(3):199-208. doi: 10.1097/RLI.0000000000000921. Epub 2022 Sep 6.
10
Normative Baseline for Radiomics in Brain MRI: Evaluating the Robustness, Regional Variations, and Reproducibility on FLAIR Images.
J Magn Reson Imaging. 2021 Feb;53(2):394-407. doi: 10.1002/jmri.27349. Epub 2020 Aug 31.

引用本文的文献

2
A critical assessment of artificial intelligence in magnetic resonance imaging of cancer.
Npj Imaging. 2025;3(1):15. doi: 10.1038/s44303-025-00076-0. Epub 2025 Apr 9.
7
Fractal-Based Morphometrics of Glioblastoma.
Adv Neurobiol. 2024;36:545-555. doi: 10.1007/978-3-031-47606-8_28.
8
Marker-controlled watershed algorithm and fuzzy C-means clustering machine learning: automated segmentation of glioblastoma from MRI images in a case series.
Ann Med Surg (Lond). 2024 Jan 26;86(3):1460-1475. doi: 10.1097/MS9.0000000000001756. eCollection 2024 Mar.
9
Bibliometric research on the developments of artificial intelligence in radiomics toward nervous system diseases.
Front Neurol. 2023 Jun 9;14:1171167. doi: 10.3389/fneur.2023.1171167. eCollection 2023.

本文引用的文献

1
ACTIVE LEARNING GUIDED INTERACTIONS FOR CONSISTENT IMAGE SEGMENTATION WITH REDUCED USER INTERACTIONS.
Proc IEEE Int Symp Biomed Imaging. 2011 Mar-Apr;2011:1645-1648. doi: 10.1109/ISBI.2011.5872719. Epub 2011 Jun 9.
3
Tissue-type mapping of gliomas.
Neuroimage Clin. 2019;21:101648. doi: 10.1016/j.nicl.2018.101648. Epub 2018 Dec 25.
4
Multimodal imaging-defined subregions in newly diagnosed glioblastoma: impact on overall survival.
Neuro Oncol. 2019 Feb 14;21(2):264-273. doi: 10.1093/neuonc/noy169.
5
Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction.
Radiology. 2018 Dec;289(3):797-806. doi: 10.1148/radiol.2018180200. Epub 2018 Oct 2.
6
Repeatability and Reproducibility of Radiomic Features: A Systematic Review.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1143-1158. doi: 10.1016/j.ijrobp.2018.05.053. Epub 2018 Jun 5.
7
A Deep Look Into the Future of Quantitative Imaging in Oncology: A Statement of Working Principles and Proposal for Change.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1074-1082. doi: 10.1016/j.ijrobp.2018.08.032. Epub 2018 Aug 28.
9
Radiomics in radiooncology - Challenging the medical physicist.
Phys Med. 2018 Apr;48:27-36. doi: 10.1016/j.ejmp.2018.03.012. Epub 2018 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验