Suppr超能文献

SKOPE-IT(作为便携式智能导师的可共享知识对象):在数学自适应学习系统上叠加自然语言辅导。

SKOPE-IT (Shareable Knowledge Objects as Portable Intelligent Tutors): overlaying natural language tutoring on an adaptive learning system for mathematics.

作者信息

Nye Benjamin D, Pavlik Philip I, Windsor Alistair, Olney Andrew M, Hajeer Mustafa, Hu Xiangen

机构信息

1Institute for Creative Technologies, University of Southern California, 12015 Waterfront Dr., Playa Vista, 90012 CA USA.

2Institute for Intelligent Systems, University of Memphis, 365 Innovation Dr., Memphis, 38152 TN USA.

出版信息

Int J STEM Educ. 2018;5(1):12. doi: 10.1186/s40594-018-0109-4. Epub 2018 Apr 13.

Abstract

BACKGROUND

This study investigated learning outcomes and user perceptions from interactions with a hybrid intelligent tutoring system created by combining the AutoTutor conversational tutoring system with the Assessment and Learning in Knowledge Spaces (ALEKS) adaptive learning system for mathematics. This hybrid intelligent tutoring system (ITS) uses a service-oriented architecture to combine these two web-based systems. Self-explanation tutoring dialogs were used to talk students through step-by-step worked examples to algebra problems. These worked examples presented an isomorphic problem to the preceding algebra problem that the student could not solve in the adaptive learning system.

RESULTS

Due to crossover issues between conditions, experimental versus control condition assignment did not show significant differences in learning gains. However, strong dose-dependent learning gains were observed that could not be otherwise explained by either initial mastery or time-on-task. User perceptions of the dialog-based tutoring were mixed, and survey results indicate that this may be due to the pacing of dialog-based tutoring using voice, students judging the agents based on their own performance (i.e., the quality of their answers to agent questions), and the students' expectations about mathematics pedagogy (i.e., expecting to solving problems rather than talking about concepts). Across all users, learning was most strongly influenced by time spent studying, which correlated with students' self-reported tendencies toward effort avoidance, effective study habits, and beliefs about their ability to improve in mathematics with effort.

CONCLUSIONS

Integrating multiple adaptive tutoring systems with complementary strengths shows some potential to improve learning. However, managing learner expectations during transitions between systems remains an open research area. Finally, while personalized adaptation can improve learning efficiency, effort and time-on-task for learning remains a dominant factor that must be considered by interventions.

摘要

背景

本研究调查了通过将自动辅导对话式辅导系统与知识空间中的评估与学习(ALEKS)数学自适应学习系统相结合而创建的混合智能辅导系统的学习成果和用户看法。这个混合智能辅导系统(ITS)使用面向服务的架构来整合这两个基于网络的系统。自我解释辅导对话用于引导学生逐步解决代数问题的示例。这些示例展示了与学生在自适应学习系统中无法解决的前一个代数问题同构的问题。

结果

由于条件之间的交叉问题,实验条件与对照条件的分配在学习收获上没有显示出显著差异。然而,观察到了强烈的剂量依赖性学习收获,这无法用初始掌握程度或任务时间来解释。用户对基于对话的辅导看法不一,调查结果表明这可能是由于基于语音的对话式辅导的节奏、学生根据自己的表现(即他们对代理问题的回答质量)来评判代理,以及学生对数学教学法的期望(即期望解决问题而不是谈论概念)。在所有用户中,学习最受学习时间的强烈影响,学习时间与学生自我报告的避免努力倾向、有效的学习习惯以及他们对通过努力提高数学能力的信念相关。

结论

整合具有互补优势的多个自适应辅导系统显示出提高学习的一些潜力。然而,在系统之间的过渡期间管理学习者期望仍然是一个开放的研究领域。最后,虽然个性化适应可以提高学习效率,但学习的努力程度和任务时间仍然是干预措施必须考虑的主导因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f39b/6310411/327d2b1046a6/40594_2018_109_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验