Suppr超能文献

D3R 挑战赛 3:蛋白质-配体构象和亲和力排序的盲测预测。

D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings.

机构信息

Drug Design Data Resource, University of California, San Diego, La Jolla, CA, 92093, USA.

RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA.

出版信息

J Comput Aided Mol Des. 2019 Jan;33(1):1-18. doi: 10.1007/s10822-018-0180-4. Epub 2019 Jan 10.

Abstract

The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand modeling by holding community-wide blinded, prediction challenges. Here, we report on our third major round, Grand Challenge 3 (GC3). Held 2017-2018, GC3 centered on the protein Cathepsin S and the kinases VEGFR2, JAK2, p38-α, TIE2, and ABL1, and included both pose-prediction and affinity-ranking components. GC3 was structured much like the prior challenges GC2015 and GC2. First, Stage 1 tested pose prediction and affinity ranking methods; then all available crystal structures were released, and Stage 2 tested only affinity rankings, now in the context of the available structures. Unique to GC3 was the addition of a Stage 1b self-docking subchallenge, in which the protein coordinates from all of the cocrystal structures used in the cross-docking challenge were released, and participants were asked to predict the pose of CatS ligands using these newly released structures. We provide an overview of the outcomes and discuss insights into trends and best-practices.

摘要

药物设计数据资源旨在通过举办社区范围的盲测、预测挑战,测试和推进蛋白质-配体建模的最新技术。在这里,我们报告我们的第三个主要挑战,即 Grand Challenge 3(GC3)。GC3 于 2017 年至 2018 年举行,以 Cathepsin S 蛋白和激酶 VEGFR2、JAK2、p38-α、TIE2 和 ABL1 为中心,包括构象预测和亲和力排序两个部分。GC3 的结构与之前的 GC2015 和 GC2 挑战非常相似。首先,第 1 阶段测试构象预测和亲和力排序方法;然后,所有可用的晶体结构都被释放,第 2 阶段仅测试亲和力排序,现在是在可用结构的背景下进行的。GC3 的独特之处在于增加了第 1b 阶段的自对接子挑战,其中释放了用于交叉对接挑战的所有共晶结构中的蛋白质坐标,要求参与者使用这些新释放的结构来预测 CatS 配体的构象。我们提供了结果概述,并讨论了对趋势和最佳实践的见解。

相似文献

1
D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings.
J Comput Aided Mol Des. 2019 Jan;33(1):1-18. doi: 10.1007/s10822-018-0180-4. Epub 2019 Jan 10.
2
Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges.
J Comput Aided Mol Des. 2019 Jan;33(1):71-82. doi: 10.1007/s10822-018-0146-6. Epub 2018 Aug 16.
3
Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3.
J Comput Aided Mol Des. 2019 Jan;33(1):83-91. doi: 10.1007/s10822-018-0148-4. Epub 2018 Aug 20.
4
D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies.
J Comput Aided Mol Des. 2018 Jan;32(1):1-20. doi: 10.1007/s10822-017-0088-4. Epub 2017 Dec 4.
6
Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3.
J Comput Aided Mol Des. 2019 Jan;33(1):47-59. doi: 10.1007/s10822-018-0142-x. Epub 2018 Aug 6.
7
Hybrid receptor structure/ligand-based docking and activity prediction in ICM: development and evaluation in D3R Grand Challenge 3.
J Comput Aided Mol Des. 2019 Jan;33(1):35-46. doi: 10.1007/s10822-018-0139-5. Epub 2018 Aug 9.
8
D3R grand challenge 4: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies.
J Comput Aided Mol Des. 2020 Feb;34(2):99-119. doi: 10.1007/s10822-020-00289-y. Epub 2020 Jan 23.
9
Blinded evaluation of cathepsin S inhibitors from the D3RGC3 dataset using molecular docking and free energy calculations.
J Comput Aided Mol Des. 2019 Jan;33(1):93-103. doi: 10.1007/s10822-018-0161-7. Epub 2018 Sep 11.
10

引用本文的文献

1
Cheminformatics-based screening and evaluation of phytochemicals as CDK2 inhibitors in colorectal cancer therapy.
PLoS One. 2025 Sep 3;20(9):e0331438. doi: 10.1371/journal.pone.0331438. eCollection 2025.
2
Predicting Affinity Through Homology (PATH): Interpretable binding affinity prediction with persistent homology.
PLoS Comput Biol. 2025 Jun 27;21(6):e1013216. doi: 10.1371/journal.pcbi.1013216. eCollection 2025 Jun.
3
Core Flipping in Lead Optimization: Rank Ordering Using λ-Dynamics.
J Chem Inf Model. 2025 Jul 14;65(13):6835-6846. doi: 10.1021/acs.jcim.5c00320. Epub 2025 Jun 16.
4
ABCG2: A Milestone Charge Model for Accurate Solvation Free Energy Calculation.
J Chem Theory Comput. 2025 Mar 25;21(6):3032-3043. doi: 10.1021/acs.jctc.5c00038. Epub 2025 Mar 11.
5
GRADE and X-GRADE: Unveiling Novel Protein-Ligand Interaction Fingerprints Based on GRAIL Scores.
J Chem Inf Model. 2025 Mar 10;65(5):2456-2475. doi: 10.1021/acs.jcim.4c01902. Epub 2025 Feb 20.
6
Importance of Computer-aided Drug Design in Modern Pharmaceutical Research.
Curr Drug Discov Technol. 2025;22(3):e15701638361318. doi: 10.2174/0115701638361318241230073123.
7
BindingDB in 2024: a FAIR knowledgebase of protein-small molecule binding data.
Nucleic Acids Res. 2025 Jan 6;53(D1):D1633-D1644. doi: 10.1093/nar/gkae1075.
8
Prediction of Threonine-Tyrosine Kinase Receptor-Ligand Unbinding Kinetics with Multiscale Milestoning and Metadynamics.
J Phys Chem Lett. 2024 Oct 24;15(42):10473-10478. doi: 10.1021/acs.jpclett.4c02332. Epub 2024 Oct 11.
10
Antibody-peptide conjugates deliver covalent inhibitors blocking oncogenic cathepsins.
Nat Chem Biol. 2024 Sep;20(9):1188-1198. doi: 10.1038/s41589-024-01627-z. Epub 2024 May 29.

本文引用的文献

1
Multiscale Methods in Drug Design Bridge Chemical and Biological Complexity in the Search for Cures.
Nat Rev Chem. 2018 Apr;2(4). doi: 10.1038/s41570-018-0148. Epub 2018 Apr 11.
2
Visualizing convolutional neural network protein-ligand scoring.
J Mol Graph Model. 2018 Sep;84:96-108. doi: 10.1016/j.jmgm.2018.06.005. Epub 2018 Jun 18.
4
Ensemble Docking in Drug Discovery.
Biophys J. 2018 May 22;114(10):2271-2278. doi: 10.1016/j.bpj.2018.02.038. Epub 2018 Mar 30.
5
Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening.
PLoS Comput Biol. 2018 Jan 8;14(1):e1005929. doi: 10.1371/journal.pcbi.1005929. eCollection 2018 Jan.
6
D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies.
J Comput Aided Mol Des. 2018 Jan;32(1):1-20. doi: 10.1007/s10822-017-0088-4. Epub 2017 Dec 4.
7
Progress towards a public chemogenomic set for protein kinases and a call for contributions.
PLoS One. 2017 Aug 2;12(8):e0181585. doi: 10.1371/journal.pone.0181585. eCollection 2017.
8
D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions.
J Comput Aided Mol Des. 2016 Sep;30(9):651-668. doi: 10.1007/s10822-016-9946-8. Epub 2016 Sep 30.
9
Advances in Activity Cliff Research.
Mol Inform. 2016 May;35(5):181-91. doi: 10.1002/minf.201600023. Epub 2016 Mar 30.
10
A pose prediction approach based on ligand 3D shape similarity.
J Comput Aided Mol Des. 2016 Jun;30(6):457-69. doi: 10.1007/s10822-016-9923-2. Epub 2016 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验