Drug Design Data Resource, University of California, San Diego, La Jolla, CA, 92093, USA.
RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA.
J Comput Aided Mol Des. 2019 Jan;33(1):1-18. doi: 10.1007/s10822-018-0180-4. Epub 2019 Jan 10.
The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand modeling by holding community-wide blinded, prediction challenges. Here, we report on our third major round, Grand Challenge 3 (GC3). Held 2017-2018, GC3 centered on the protein Cathepsin S and the kinases VEGFR2, JAK2, p38-α, TIE2, and ABL1, and included both pose-prediction and affinity-ranking components. GC3 was structured much like the prior challenges GC2015 and GC2. First, Stage 1 tested pose prediction and affinity ranking methods; then all available crystal structures were released, and Stage 2 tested only affinity rankings, now in the context of the available structures. Unique to GC3 was the addition of a Stage 1b self-docking subchallenge, in which the protein coordinates from all of the cocrystal structures used in the cross-docking challenge were released, and participants were asked to predict the pose of CatS ligands using these newly released structures. We provide an overview of the outcomes and discuss insights into trends and best-practices.
药物设计数据资源旨在通过举办社区范围的盲测、预测挑战,测试和推进蛋白质-配体建模的最新技术。在这里,我们报告我们的第三个主要挑战,即 Grand Challenge 3(GC3)。GC3 于 2017 年至 2018 年举行,以 Cathepsin S 蛋白和激酶 VEGFR2、JAK2、p38-α、TIE2 和 ABL1 为中心,包括构象预测和亲和力排序两个部分。GC3 的结构与之前的 GC2015 和 GC2 挑战非常相似。首先,第 1 阶段测试构象预测和亲和力排序方法;然后,所有可用的晶体结构都被释放,第 2 阶段仅测试亲和力排序,现在是在可用结构的背景下进行的。GC3 的独特之处在于增加了第 1b 阶段的自对接子挑战,其中释放了用于交叉对接挑战的所有共晶结构中的蛋白质坐标,要求参与者使用这些新释放的结构来预测 CatS 配体的构象。我们提供了结果概述,并讨论了对趋势和最佳实践的见解。