Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.
Eur J Neurosci. 2020 Jan;51(1):109-138. doi: 10.1111/ejn.14343. Epub 2019 Jan 29.
Twenty-four-hour rhythmicity in physiology and behavior are driven by changes in neurophysiological activity that vary across the light-dark and rest-activity cycle. Although this neural code is most prominent in neurons of the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, there are many other regions in the brain where region-specific function and behavioral rhythmicity may be encoded by changes in electrical properties of those neurons. In this review, we explore the existing evidence for molecular clocks and/or neurophysiological rhythms (i.e., 24 hr) in brain regions outside the SCN. In addition, we highlight the brain regions that are ripe for future investigation into the critical role of circadian rhythmicity for local oscillators. For example, the cerebellum expresses rhythmicity in over 2,000 gene transcripts, and yet we know very little about how circadian regulation drives 24-hr changes in the neural coding responsible for motor coordination. Finally, we conclude with a discussion of how our understanding of circadian regulation of electrical properties may yield insight into disease mechanisms which may lead to novel chronotherapeutic strategies in the future.
生理和行为的 24 小时节律性是由神经生理活动的变化驱动的,这些变化在光-暗和休息-活动周期中有所不同。虽然这个神经密码在位于下丘脑的视交叉上核(SCN)中的主要生物钟神经元中最为明显,但在大脑的许多其他区域中,特定区域的功能和行为节律性可能通过这些神经元的电特性变化来编码。在这篇综述中,我们探讨了 SCN 以外的大脑区域中存在的分子钟和/或神经生理节律(即 24 小时)的证据。此外,我们还强调了那些对于研究生物钟节律对于局部振荡器的关键作用具有很大潜力的大脑区域。例如,小脑中超过 2000 个基因转录本表达出节律性,但我们对生物钟调节如何驱动负责运动协调的神经编码中 24 小时的变化知之甚少。最后,我们讨论了我们对电特性的生物钟调节的理解如何为疾病机制提供见解,这可能导致未来出现新的时间治疗策略。