Suppr超能文献

Qoala-T:一种用于 FreeSurfer 分割 MRI 数据质量控制的监督学习工具。

Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data.

机构信息

Department of Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, the Netherlands; Department of Child and Adolescent Psychiatry, Curium-Leiden University Medical Center, the Netherlands.

Department of Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, the Netherlands.

出版信息

Neuroimage. 2019 Apr 1;189:116-129. doi: 10.1016/j.neuroimage.2019.01.014. Epub 2019 Jan 8.

Abstract

Performing quality control to detect image artifacts and data-processing errors is crucial in structural magnetic resonance imaging, especially in developmental studies. Currently, many studies rely on visual inspection by trained raters for quality control. The subjectivity of these manual procedures lessens comparability between studies, and with growing study sizes quality control is increasingly time consuming. In addition, both inter-rater as well as intra-rater variability of manual quality control is high and may lead to inclusion of poor quality scans and exclusion of scans of usable quality. In the current study we present the Qoala-T tool, which is an easy and free to use supervised-learning model to reduce rater bias and misclassification in manual quality control procedures using FreeSurfer-processed scans. First, we manually rated quality of N = 784 FreeSurfer-processed T1-weighted scans acquired in three different waves in a longitudinal study. Different supervised-learning models were then compared to predict manual quality ratings using FreeSurfer segmented output data. Results show that the Qoala-T tool using random forests is able to predict scan quality with both high sensitivity and specificity (mean area under the curve (AUC) = 0.98). In addition, the Qoala-T tool was also able to adequately predict the quality of two novel unseen datasets (total N = 872). Finally, analyses of age effects showed that younger participants were more likely to have lower scan quality, underlining that scan quality might confound findings attributed to age effects. These outcomes indicate that this procedure could further help to reduce variability related to manual quality control, thereby benefiting the comparability of data quality between studies.

摘要

在结构磁共振成像中,进行质量控制以检测图像伪影和数据处理错误至关重要,尤其是在发育研究中。目前,许多研究依赖于经过训练的评分者进行质量控制的视觉检查。这些手动程序的主观性降低了研究之间的可比性,并且随着研究规模的扩大,质量控制越来越耗时。此外,手动质量控制的评分者间和评分者内变异性都很高,可能导致包括质量较差的扫描和排除可用质量的扫描。在当前的研究中,我们提出了 Qoala-T 工具,这是一种简单且免费使用的监督学习模型,可使用 FreeSurfer 处理的扫描减少手动质量控制过程中的评分者偏差和误分类。首先,我们手动评估了在纵向研究中的三个不同波中获取的 N=784 个 FreeSurfer 处理的 T1 加权扫描的质量。然后,比较了不同的监督学习模型,以使用 FreeSurfer 分割输出数据预测手动质量评分。结果表明,使用随机森林的 Qoala-T 工具能够以高灵敏度和特异性预测扫描质量(平均曲线下面积(AUC)=0.98)。此外,Qoala-T 工具还能够充分预测两个新的未见数据集的质量(总 N=872)。最后,对年龄效应的分析表明,年轻的参与者更有可能具有较低的扫描质量,这强调了扫描质量可能会混淆归因于年龄效应的发现。这些结果表明,该程序可以进一步帮助减少与手动质量控制相关的变异性,从而有利于研究之间数据质量的可比性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验