Suppr超能文献

基于监督学习的磁共振新生儿数据集伪影质量控制方法

Supervised machine learning quality control for magnetic resonance artifacts in neonatal data sets.

机构信息

Department of Pediatrics, Sainte-Justine University Hospital and University of Montreal, Montreal, Quebec, Canada.

Canadian Neonatal Brain Platform, Montreal, Quebec, Canada.

出版信息

Hum Brain Mapp. 2019 Mar;40(4):1290-1297. doi: 10.1002/hbm.24449. Epub 2018 Nov 22.

Abstract

Quality control (QC) of brain magnetic resonance images (MRI) is an important process requiring a significant amount of manual inspection. Major artifacts, such as severe subject motion, are easy to identify to naïve observers but lack automated identification tools. Clinical trials involving motion-prone neonates typically pool data to obtain sufficient power, and automated quality control protocols are especially important to safeguard data quality. Current study tested an open source method to detect major artifacts among 2D neonatal MRI via supervised machine learning. A total of 1,020 two-dimensional transverse T2-weighted MRI images of preterm newborns were examined and classified as either QC Pass or QC Fail. Then 70 features across focus, texture, noise, and natural scene statistics categories were extracted from each image. Several different classifiers were trained and their performance was compared with subjective rating as the gold standard. We repeated the rating process again to examine the stability of the rating and classification. When tested via 10-fold cross validation, the random undersampling and adaboost ensemble (RUSBoost) method achieved the best overall performance for QC Fail images with 85% positive predictive value along with 75% sensitivity. Similar classification performance was observed in the analyses of the repeated subjective rating. Current results served as a proof of concept for predicting images that fail quality control using no-reference objective image features. We also highlighted the importance of evaluating results beyond mere accuracy as a performance measure for machine learning in imbalanced group settings due to larger proportion of QC Pass quality images.

摘要

磁共振图像(MRI)的质量控制(QC)是一项需要大量人工检查的重要过程。主要伪影,如严重的受试者运动,很容易被新手观察者识别,但缺乏自动识别工具。涉及易动新生儿的临床试验通常会汇集数据以获得足够的效力,因此自动化质量控制协议对于保证数据质量尤为重要。本研究通过有监督的机器学习测试了一种用于检测二维新生儿 MRI 中主要伪影的开源方法。共检查了 1020 例早产儿的二维横向 T2 加权 MRI 图像,并将其分类为 QC 通过或 QC 失败。然后从每个图像中提取了聚焦、纹理、噪声和自然场景统计类别中的 70 个特征。训练了几种不同的分类器,并将其性能与主观评分(作为金标准)进行比较。我们再次重复评分过程,以检查评分和分类的稳定性。当通过 10 倍交叉验证进行测试时,随机欠采样和 adaboost 集成(RUSBoost)方法在 QC 失败图像中表现出最佳的整体性能,阳性预测值为 85%,灵敏度为 75%。在重复主观评分的分析中也观察到了类似的分类性能。当前的结果为使用无参考客观图像特征预测质量控制失败的图像提供了概念证明。我们还强调了由于 QC 通过质量图像的比例较大,因此在不平衡组设置中,除了准确性之外,还需要评估结果作为机器学习的性能衡量标准的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09f3/6865489/5d369d050eb4/HBM-40-1290-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验