Suppr超能文献

基于梯度的多目标特征选择在股骨截肢者步态模式识别中的应用。

Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.

机构信息

Department of Electrical Engineering and Computer Science, Cleveland State University, Cleveland, OH 44115, USA.

出版信息

Sensors (Basel). 2019 Jan 10;19(2):253. doi: 10.3390/s19020253.

Abstract

One control challenge in prosthetic legs is seamless transition from one gait mode to another. User intent recognition (UIR) is a high-level controller that tells a low-level controller to switch to the identified activity mode, depending on the user's intent and environment. We propose a new framework to design an optimal UIR system with simultaneous maximum performance and minimum complexity for gait mode recognition. We use multi-objective optimization (MOO) to find an optimal feature subset that creates a trade-off between these two conflicting objectives. The main contribution of this paper is two-fold: (1) a new gradient-based multi-objective feature selection (GMOFS) method for optimal UIR design; and (2) the application of advanced evolutionary MOO methods for UIR. GMOFS is an embedded method that simultaneously performs feature selection and classification by incorporating an elastic net in multilayer perceptron neural network training. Experimental data are collected from six subjects, including three able-bodied subjects and three transfemoral amputees. We implement GMOFS and four variants of multi-objective biogeography-based optimization (MOBBO) for optimal feature subset selection, and we compare their performances using normalized hypervolume and relative coverage. GMOFS demonstrates competitive performance compared to the four MOBBO methods. We achieve a mean classification accuracy of 97.14 % ± 1.51 % and 98.45 % ± 1.22 % with the optimal selected subset for able-bodied and amputee subjects, respectively, while using only 23% of the available features. Results thus indicate the potential of advanced optimization methods to simultaneously achieve accurate, reliable, and compact UIR for locomotion mode detection of lower-limb amputees with prostheses.

摘要

假肢的一个控制挑战是无缝地从一种步态模式过渡到另一种步态模式。用户意图识别 (UIR) 是一种高层控制器,它根据用户的意图和环境,告诉低层控制器切换到识别的活动模式。我们提出了一种新的框架,用于设计具有最佳性能和最小复杂度的 UIR 系统,以进行步态模式识别。我们使用多目标优化 (MOO) 来找到最佳特征子集,在这两个相互冲突的目标之间创建一个权衡。本文的主要贡献有两个方面:(1) 用于最佳 UIR 设计的新基于梯度的多目标特征选择 (GMOFS) 方法;(2) 将先进的进化 MOO 方法应用于 UIR。GMOFS 是一种嵌入式方法,通过在多层感知器神经网络训练中结合弹性网络,同时执行特征选择和分类。实验数据是从六位受试者中收集的,包括三位健全受试者和三位股骨截肢者。我们实现了 GMOFS 和四种基于生物地理学的多目标优化 (MOBBO) 变体,用于最佳特征子集选择,并使用归一化超体积和相对覆盖度来比较它们的性能。与四种 MOBBO 方法相比,GMOFS 表现出了有竞争力的性能。我们分别为健全受试者和截肢者受试者实现了 97.14%±1.51%和 98.45%±1.22%的平均分类准确率,而仅使用了 23%的可用特征。因此,结果表明,先进的优化方法有可能同时实现下肢假肢运动模式检测的准确、可靠和紧凑的 UIR。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验