Vanzanella Veronica, Scatto Marco, Zant Erwin, Sisani Michele, Bastianini Maria, Grizzuti Nino
Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy.
Nadir S.r.l., c/o Scientific Campus University Ca' Foscari Venezia, Via Torino 155b, 30172 Mestre, Italy.
Materials (Basel). 2019 Jan 10;12(2):226. doi: 10.3390/ma12020226.
Poly(ethyleneoxideterephthalate)/poly(butyleneterephthalate) (PEOT/PBT) segmented block copolymers are widely used for the manufacturing of 3D-printed bio-scaffolds, due to a combination of several properties, such as cell viability, bio-compatibility, and bio-degradability. Furthermore, they are characterized by a relatively low viscosity at high temperatures, which is desired during the injection stages of the printing process. At the same time, the microphase separated morphology generated by the demixing of hard and soft segments at intermediate temperatures allows for a quick transition from a liquid-like to a solid-like behavior, thus favoring the shaping and the dimensional stability of the scaffold. In this work, for the first time, the rheology of a commercial PEOT/PBT material is studied over a wide range of temperatures encompassing both the melt state and the phase transition regime. Non-isothermal viscoelastic measurements under oscillatory shear flow allow for a quantitative determination of the material processability in the melt state. Additionally, isothermal experiments below the order⁻disorder temperature are used to determine the temperature dependence of the phase transition kinetics. The importance of the rheological characterization when designing the 3D-printing scaffold process is also discussed.
聚(乙二氧基对苯二甲酸酯)/聚(丁二氧基对苯二甲酸酯)(PEOT/PBT)嵌段共聚物由于具有细胞活力、生物相容性和生物降解性等多种特性的组合,被广泛用于制造3D打印生物支架。此外,它们的特点是在高温下具有相对较低的粘度,这在打印过程的注射阶段是很理想的。同时,在中间温度下硬段和软段的相分离产生的微相分离形态允许从类似液体的行为快速转变为类似固体的行为,从而有利于支架的成型和尺寸稳定性。在这项工作中,首次在涵盖熔体状态和相变区域的广泛温度范围内研究了一种商业PEOT/PBT材料的流变学。在振荡剪切流下的非等温粘弹性测量允许定量确定材料在熔体状态下的加工性能。此外,在有序-无序温度以下的等温实验用于确定相变动力学的温度依赖性。还讨论了流变学表征在设计3D打印支架过程中的重要性。