Suppr超能文献

多链路分析:基于稀疏连接分析的脑网络比较。

MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis.

机构信息

Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy.

Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland.

出版信息

Sci Rep. 2019 Jan 11;9(1):65. doi: 10.1038/s41598-018-37300-4.

Abstract

The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets.

摘要

从连接视角分析大脑,揭示了大脑结构和功能的新见解。然而,由于缺乏用于做出假设的先验知识,发现受到了阻碍。此外,由于数据的高维性,探索性数据分析变得复杂。事实上,为了评估病理状态对大脑网络的影响,神经科学家经常需要在病例对照研究中评估实验效应,涉及数十万条连接。在本文中,我们提出了一种方法来识别大脑连接中表征两个不同组的多元关系,从而允许研究人员立即发现包含实验组之间差异信息的子网。特别是,我们对与连接组学相关的数据发现感兴趣,其中找到表征两组受试者之间差异的连接。然而,这些连接并不一定能最大程度地提高分类的准确性,因为这并不能保证对组间特定差异的可靠解释。在实践中,我们的方法利用了最近的机器学习技术,采用稀疏性来处理描述全脑宏观连接的加权网络。我们在人类和鼠脑数据的功能和结构连接组学上评估了我们的技术。在我们的实验中,我们通过使用监督和无监督解剖驱动分区方法以及使用高维数据集,自动识别了数据集与疾病相关的连接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4326/6329758/f52e2a97b494/41598_2018_37300_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验